Limits...
Population Structure of Montastraea cavernosa on Shallow versus Mesophotic Reefs in Bermuda.

Goodbody-Gringley G, Marchini C, Chequer AD, Goffredo S - PLoS ONE (2015)

Bottom Line: The Caribbean coral, Montastraea cavernosa, is considered a depth generalist and is commonly found at mesophotic depths.Colony density was significantly higher at mesophotic sites, however, resulting in equal contributions to overall percent cover.Overall, the results of this study provide valuable baseline data on population structure, which indicate that the mesophotic reefs of Bermuda support an established population of M. cavernosa.

View Article: PubMed Central - PubMed

Affiliation: Bermuda Institute of Ocean Sciences, 17 Biological Lane, St. Georges, Bermuda GE 01.

ABSTRACT
Mesophotic coral reef ecosystems remain largely unexplored with only limited information available on taxonomic composition, abundance and distribution. Yet, mesophotic reefs may serve as potential refugia for shallow-water species and thus understanding biodiversity, ecology and connectivity of deep reef communities is integral for resource management and conservation. The Caribbean coral, Montastraea cavernosa, is considered a depth generalist and is commonly found at mesophotic depths. We surveyed abundance and size-frequency of M. cavernosa populations at six shallow (10m) and six upper mesophotic (45m) sites in Bermuda and found population structure was depth dependent. The mean surface area of colonies at mesophotic sites was significantly smaller than at shallow sites, suggesting that growth rates and maximum colony surface area are limited on mesophotic reefs. Colony density was significantly higher at mesophotic sites, however, resulting in equal contributions to overall percent cover. Size-frequency distributions between shallow and mesophotic sites were also significantly different with populations at mesophotic reefs skewed towards smaller individuals. Overall, the results of this study provide valuable baseline data on population structure, which indicate that the mesophotic reefs of Bermuda support an established population of M. cavernosa.

No MeSH data available.


Related in: MedlinePlus

Nutrient Concentration and Temperature by Depth.(a) mean (±SD) concentration (μM) of nitrate (NO3) + nitrite (NO2) and silicate (SiO4-2) on shallow (10m; n = 4 per site) versus mesophotic sites (45m; n = 4 per site) from water samples collected September 5, 2015 (NO3 + NO2, p<0.0001, Tuckers, p = 0.019, Spittal; SiO4-2, p = 0.001, Tuckers, p = 0.058, Spittal; Student’s t-tests); (b) box blot of seawater temperature at shallow (10m) and mesophotic (45m) sites showing median values (solid horizontal line), 25th and 75th percentile values (box outline), and minimum and maximum values (whiskers) recorded between July 2014 and January 2015 from 6 paired shallow (10m) and mesophotic (45m) survey sites (2 dives per site); Rita/XL, Coopers, Tuckers, Spittal, Devonshire, and Hungry Bay (p<0.0001, Students t-test, n = 6).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4636301&req=5

pone.0142427.g007: Nutrient Concentration and Temperature by Depth.(a) mean (±SD) concentration (μM) of nitrate (NO3) + nitrite (NO2) and silicate (SiO4-2) on shallow (10m; n = 4 per site) versus mesophotic sites (45m; n = 4 per site) from water samples collected September 5, 2015 (NO3 + NO2, p<0.0001, Tuckers, p = 0.019, Spittal; SiO4-2, p = 0.001, Tuckers, p = 0.058, Spittal; Student’s t-tests); (b) box blot of seawater temperature at shallow (10m) and mesophotic (45m) sites showing median values (solid horizontal line), 25th and 75th percentile values (box outline), and minimum and maximum values (whiskers) recorded between July 2014 and January 2015 from 6 paired shallow (10m) and mesophotic (45m) survey sites (2 dives per site); Rita/XL, Coopers, Tuckers, Spittal, Devonshire, and Hungry Bay (p<0.0001, Students t-test, n = 6).

Mentions: Nutrient concentrations were higher on shallow sites compared with mesophotic sites (Fig 7A), with significant differences found in concentrations of nitrate and nitrite between depths (p<0.0001, Tuckers; p = 0.019, Spittal; Student’s t-tests, n = 4) and silicate between depths at Tuckers (p = 0.001, Student’s t-test, n = 4), but not at Spittal (p = 0.058, Student’s t-test, n = 4). Mean seawater temperatures also differed significantly by depth, being higher on shallow sites compared with mesophotic sites (p<0.0001, Student’s t-test, n = 6). Likewise, variation in temperature was more pronounced on shallow sites, ranging from 22.8 to 29.5°C, compared with mesophotic sites, ranging from 22.2 to 27.8°C (Fig 7B).


Population Structure of Montastraea cavernosa on Shallow versus Mesophotic Reefs in Bermuda.

Goodbody-Gringley G, Marchini C, Chequer AD, Goffredo S - PLoS ONE (2015)

Nutrient Concentration and Temperature by Depth.(a) mean (±SD) concentration (μM) of nitrate (NO3) + nitrite (NO2) and silicate (SiO4-2) on shallow (10m; n = 4 per site) versus mesophotic sites (45m; n = 4 per site) from water samples collected September 5, 2015 (NO3 + NO2, p<0.0001, Tuckers, p = 0.019, Spittal; SiO4-2, p = 0.001, Tuckers, p = 0.058, Spittal; Student’s t-tests); (b) box blot of seawater temperature at shallow (10m) and mesophotic (45m) sites showing median values (solid horizontal line), 25th and 75th percentile values (box outline), and minimum and maximum values (whiskers) recorded between July 2014 and January 2015 from 6 paired shallow (10m) and mesophotic (45m) survey sites (2 dives per site); Rita/XL, Coopers, Tuckers, Spittal, Devonshire, and Hungry Bay (p<0.0001, Students t-test, n = 6).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4636301&req=5

pone.0142427.g007: Nutrient Concentration and Temperature by Depth.(a) mean (±SD) concentration (μM) of nitrate (NO3) + nitrite (NO2) and silicate (SiO4-2) on shallow (10m; n = 4 per site) versus mesophotic sites (45m; n = 4 per site) from water samples collected September 5, 2015 (NO3 + NO2, p<0.0001, Tuckers, p = 0.019, Spittal; SiO4-2, p = 0.001, Tuckers, p = 0.058, Spittal; Student’s t-tests); (b) box blot of seawater temperature at shallow (10m) and mesophotic (45m) sites showing median values (solid horizontal line), 25th and 75th percentile values (box outline), and minimum and maximum values (whiskers) recorded between July 2014 and January 2015 from 6 paired shallow (10m) and mesophotic (45m) survey sites (2 dives per site); Rita/XL, Coopers, Tuckers, Spittal, Devonshire, and Hungry Bay (p<0.0001, Students t-test, n = 6).
Mentions: Nutrient concentrations were higher on shallow sites compared with mesophotic sites (Fig 7A), with significant differences found in concentrations of nitrate and nitrite between depths (p<0.0001, Tuckers; p = 0.019, Spittal; Student’s t-tests, n = 4) and silicate between depths at Tuckers (p = 0.001, Student’s t-test, n = 4), but not at Spittal (p = 0.058, Student’s t-test, n = 4). Mean seawater temperatures also differed significantly by depth, being higher on shallow sites compared with mesophotic sites (p<0.0001, Student’s t-test, n = 6). Likewise, variation in temperature was more pronounced on shallow sites, ranging from 22.8 to 29.5°C, compared with mesophotic sites, ranging from 22.2 to 27.8°C (Fig 7B).

Bottom Line: The Caribbean coral, Montastraea cavernosa, is considered a depth generalist and is commonly found at mesophotic depths.Colony density was significantly higher at mesophotic sites, however, resulting in equal contributions to overall percent cover.Overall, the results of this study provide valuable baseline data on population structure, which indicate that the mesophotic reefs of Bermuda support an established population of M. cavernosa.

View Article: PubMed Central - PubMed

Affiliation: Bermuda Institute of Ocean Sciences, 17 Biological Lane, St. Georges, Bermuda GE 01.

ABSTRACT
Mesophotic coral reef ecosystems remain largely unexplored with only limited information available on taxonomic composition, abundance and distribution. Yet, mesophotic reefs may serve as potential refugia for shallow-water species and thus understanding biodiversity, ecology and connectivity of deep reef communities is integral for resource management and conservation. The Caribbean coral, Montastraea cavernosa, is considered a depth generalist and is commonly found at mesophotic depths. We surveyed abundance and size-frequency of M. cavernosa populations at six shallow (10m) and six upper mesophotic (45m) sites in Bermuda and found population structure was depth dependent. The mean surface area of colonies at mesophotic sites was significantly smaller than at shallow sites, suggesting that growth rates and maximum colony surface area are limited on mesophotic reefs. Colony density was significantly higher at mesophotic sites, however, resulting in equal contributions to overall percent cover. Size-frequency distributions between shallow and mesophotic sites were also significantly different with populations at mesophotic reefs skewed towards smaller individuals. Overall, the results of this study provide valuable baseline data on population structure, which indicate that the mesophotic reefs of Bermuda support an established population of M. cavernosa.

No MeSH data available.


Related in: MedlinePlus