Limits...
Population Structure of Montastraea cavernosa on Shallow versus Mesophotic Reefs in Bermuda.

Goodbody-Gringley G, Marchini C, Chequer AD, Goffredo S - PLoS ONE (2015)

Bottom Line: The Caribbean coral, Montastraea cavernosa, is considered a depth generalist and is commonly found at mesophotic depths.Colony density was significantly higher at mesophotic sites, however, resulting in equal contributions to overall percent cover.Overall, the results of this study provide valuable baseline data on population structure, which indicate that the mesophotic reefs of Bermuda support an established population of M. cavernosa.

View Article: PubMed Central - PubMed

Affiliation: Bermuda Institute of Ocean Sciences, 17 Biological Lane, St. Georges, Bermuda GE 01.

ABSTRACT
Mesophotic coral reef ecosystems remain largely unexplored with only limited information available on taxonomic composition, abundance and distribution. Yet, mesophotic reefs may serve as potential refugia for shallow-water species and thus understanding biodiversity, ecology and connectivity of deep reef communities is integral for resource management and conservation. The Caribbean coral, Montastraea cavernosa, is considered a depth generalist and is commonly found at mesophotic depths. We surveyed abundance and size-frequency of M. cavernosa populations at six shallow (10m) and six upper mesophotic (45m) sites in Bermuda and found population structure was depth dependent. The mean surface area of colonies at mesophotic sites was significantly smaller than at shallow sites, suggesting that growth rates and maximum colony surface area are limited on mesophotic reefs. Colony density was significantly higher at mesophotic sites, however, resulting in equal contributions to overall percent cover. Size-frequency distributions between shallow and mesophotic sites were also significantly different with populations at mesophotic reefs skewed towards smaller individuals. Overall, the results of this study provide valuable baseline data on population structure, which indicate that the mesophotic reefs of Bermuda support an established population of M. cavernosa.

No MeSH data available.


Related in: MedlinePlus

Size-Frequency by Site.Size-frequency distributions of M. cavernosa on a logarithmic scale represented as the number of individuals within each log transformed size class for colonies from each survey location (Rita/XL, Coopers, Tuckers, Spittal, Devonshire, Hungry Bay) at 10m (gray bars) and 45m (black bars) depths. Sites that differed significantly from a normal distribution are indicated with an asterisk (*; α<0.05).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4636301&req=5

pone.0142427.g005: Size-Frequency by Site.Size-frequency distributions of M. cavernosa on a logarithmic scale represented as the number of individuals within each log transformed size class for colonies from each survey location (Rita/XL, Coopers, Tuckers, Spittal, Devonshire, Hungry Bay) at 10m (gray bars) and 45m (black bars) depths. Sites that differed significantly from a normal distribution are indicated with an asterisk (*; α<0.05).

Mentions: Distributions within each of the mesophotic sites were bell-shaped, and 2 out of six sites did not differ from normal distribution (Table 2, Fig 5; p>0.05). Distributions within the shallow sites were more variable due to the lower density of individuals, with distributions at all sites differing from a normal distribution (Fig 5; p<0.05). Similarity of size-frequency distributions from each site were compared using the Spearman rank-correlation coefficient. These comparisons showed that distributions from the same depths (from distant sites) were more similar than those from adjacent sites at different depths (Table 3). The mean correlation coefficient of distributions from sites at the same depths was 0.29 (SD = 0.08, n = 30), while the mean correlation coefficient of comparisons from adjacent sites at different depths was 0.24 (SD = 0.28, n = 6). These means are significantly different (p = 0.006, Mann-Whitney U-test). The high degree of similarity between distributions from the same depth suggests that the population structure of M. cavernosa has depth specific characteristics. The PCO results are provided in Fig 6, confirming a clear separation of the size-frequency distributions between depths and more similarity among sites of the same depth than between paired sites at different depths.


Population Structure of Montastraea cavernosa on Shallow versus Mesophotic Reefs in Bermuda.

Goodbody-Gringley G, Marchini C, Chequer AD, Goffredo S - PLoS ONE (2015)

Size-Frequency by Site.Size-frequency distributions of M. cavernosa on a logarithmic scale represented as the number of individuals within each log transformed size class for colonies from each survey location (Rita/XL, Coopers, Tuckers, Spittal, Devonshire, Hungry Bay) at 10m (gray bars) and 45m (black bars) depths. Sites that differed significantly from a normal distribution are indicated with an asterisk (*; α<0.05).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4636301&req=5

pone.0142427.g005: Size-Frequency by Site.Size-frequency distributions of M. cavernosa on a logarithmic scale represented as the number of individuals within each log transformed size class for colonies from each survey location (Rita/XL, Coopers, Tuckers, Spittal, Devonshire, Hungry Bay) at 10m (gray bars) and 45m (black bars) depths. Sites that differed significantly from a normal distribution are indicated with an asterisk (*; α<0.05).
Mentions: Distributions within each of the mesophotic sites were bell-shaped, and 2 out of six sites did not differ from normal distribution (Table 2, Fig 5; p>0.05). Distributions within the shallow sites were more variable due to the lower density of individuals, with distributions at all sites differing from a normal distribution (Fig 5; p<0.05). Similarity of size-frequency distributions from each site were compared using the Spearman rank-correlation coefficient. These comparisons showed that distributions from the same depths (from distant sites) were more similar than those from adjacent sites at different depths (Table 3). The mean correlation coefficient of distributions from sites at the same depths was 0.29 (SD = 0.08, n = 30), while the mean correlation coefficient of comparisons from adjacent sites at different depths was 0.24 (SD = 0.28, n = 6). These means are significantly different (p = 0.006, Mann-Whitney U-test). The high degree of similarity between distributions from the same depth suggests that the population structure of M. cavernosa has depth specific characteristics. The PCO results are provided in Fig 6, confirming a clear separation of the size-frequency distributions between depths and more similarity among sites of the same depth than between paired sites at different depths.

Bottom Line: The Caribbean coral, Montastraea cavernosa, is considered a depth generalist and is commonly found at mesophotic depths.Colony density was significantly higher at mesophotic sites, however, resulting in equal contributions to overall percent cover.Overall, the results of this study provide valuable baseline data on population structure, which indicate that the mesophotic reefs of Bermuda support an established population of M. cavernosa.

View Article: PubMed Central - PubMed

Affiliation: Bermuda Institute of Ocean Sciences, 17 Biological Lane, St. Georges, Bermuda GE 01.

ABSTRACT
Mesophotic coral reef ecosystems remain largely unexplored with only limited information available on taxonomic composition, abundance and distribution. Yet, mesophotic reefs may serve as potential refugia for shallow-water species and thus understanding biodiversity, ecology and connectivity of deep reef communities is integral for resource management and conservation. The Caribbean coral, Montastraea cavernosa, is considered a depth generalist and is commonly found at mesophotic depths. We surveyed abundance and size-frequency of M. cavernosa populations at six shallow (10m) and six upper mesophotic (45m) sites in Bermuda and found population structure was depth dependent. The mean surface area of colonies at mesophotic sites was significantly smaller than at shallow sites, suggesting that growth rates and maximum colony surface area are limited on mesophotic reefs. Colony density was significantly higher at mesophotic sites, however, resulting in equal contributions to overall percent cover. Size-frequency distributions between shallow and mesophotic sites were also significantly different with populations at mesophotic reefs skewed towards smaller individuals. Overall, the results of this study provide valuable baseline data on population structure, which indicate that the mesophotic reefs of Bermuda support an established population of M. cavernosa.

No MeSH data available.


Related in: MedlinePlus