Limits...
The Murine Bladder Supports a Population of Stromal Sca-1+/CD34+/lin- Mesenchymal Stem Cells.

Lilly MA, Kulkulka NA, Firmiss PR, Ross MJ, Flum AS, Santos GB, Bowen DK, Dettman RW, Gong EM - PLoS ONE (2015)

Bottom Line: These cells function normally during organ homeostasis, but become dysregulated after organ injury.These cells differentiated into other mesenchymal lineages (chondrocytes, adipocytes and osteocytes) upon culture in induction medium.Partial obstruction resulted in upregulation of fibrosis genes within the Sca-1+/CD34+/lin- population.

View Article: PubMed Central - PubMed

Affiliation: Developmental Biology, Stanley Manne Children's Research Institute, Anne and Robert H. Lurie Children's Hospital of Chicago, 225 E. Chicago Ave. Box 225, Chicago, Illinois, 60611, United States of America.

ABSTRACT
Bladder fibrosis is an undesired end point of injury of obstruction and often renders the smooth muscle layer noncompliant. In many cases, the long-term effect of bladder fibrosis is renal failure. Despite our understanding of the progression of this disease, little is known about the cellular mechanisms that lead to a remodeled bladder wall. Resident stem (progenitor) cells have been identified in various organs such as the brain, heart and lung. These cells function normally during organ homeostasis, but become dysregulated after organ injury. Here, we aimed to characterize a mesenchymal progenitor cell population as a first step in understanding its role in bladder fibrosis. Using fluorescence activated cell sorting (FACS), we identified a Sca-1+/ CD34+/ lin- (PECAM-: CD45-: Ter119-) population in the adult murine bladder. These cells were localized to the stromal layer of the adult bladder and appeared by postnatal day 1. Cultured Sca-1+/ CD34+/ lin- bladder cells self-renewed, formed colonies and spontaneously differentiated into cells expressing smooth muscle genes. These cells differentiated into other mesenchymal lineages (chondrocytes, adipocytes and osteocytes) upon culture in induction medium. Both acute and partial obstruction of the bladder reduced expression of CD34 and changed localization of Sca-1 to the urothelium. Partial obstruction resulted in upregulation of fibrosis genes within the Sca-1+/CD34+/lin- population. Our data indicate a resident, mesenchymal stem cell population in the bladder that is altered by bladder obstruction. These findings provide new information about the cellular changes in the bladder that may be associated with bladder fibrosis.

No MeSH data available.


Related in: MedlinePlus

Appearance of a Sca-1+/CD34+ cell population in the bladder stroma by postnatal day -1.Embryonic CD1 mouse bladders were stained at various time points in development for CD34 (A, E, I, M) and Sca-1 (B, F, J, N). Embryonic Sca-1egfp mouse bladders were stained at various time points for smooth muscle myosin (C, D, G, K) and CD34 (D, H, L, O, P). EGFP (green) was detected endogenously. The age of the bladders is shown to the left of the panels. In some cases the lumen of the bladder is indicated (lum). Arrowheads in (J) point to cells that have reacted with anti-Sca-1 at this stage. Arrowheads (D, H, L, P) point to EGFP expressing cells co-localized to the CD34 expressing cells of the developing stroma. Scale bars are as shown.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4634995&req=5

pone.0141437.g006: Appearance of a Sca-1+/CD34+ cell population in the bladder stroma by postnatal day -1.Embryonic CD1 mouse bladders were stained at various time points in development for CD34 (A, E, I, M) and Sca-1 (B, F, J, N). Embryonic Sca-1egfp mouse bladders were stained at various time points for smooth muscle myosin (C, D, G, K) and CD34 (D, H, L, O, P). EGFP (green) was detected endogenously. The age of the bladders is shown to the left of the panels. In some cases the lumen of the bladder is indicated (lum). Arrowheads in (J) point to cells that have reacted with anti-Sca-1 at this stage. Arrowheads (D, H, L, P) point to EGFP expressing cells co-localized to the CD34 expressing cells of the developing stroma. Scale bars are as shown.

Mentions: To investigate if stromal Sca-1+/CD34+ cells are present during fetal development we stained sections from CD1 embryonic bladders (Fig 6). As early as E14.5, CD34 expression was localized throughout the bladder wall and in portions of the differentiating smooth muscle layer of the bladder (Fig 6A). CD34 was observed throughout the E16.5 bladder, more dispersed through the bladder wall and in what appears to be a condensing stromal layer (Fig 6E). At E18.5, CD34 expressing cells were numerous in what is now clearly the stromal layer of the bladder (Fig 6I). The distribution of these cells narrowed over time to correspond to a compact stromal compartment at P01 (Fig 6M). Sca-1 protein, on the other hand, was not detected in embryonic bladders until E18.5 (Fig 6B, 6F, 6J and 6N) while it was detected in other tissues of the embryo (data not shown). At E18.5, the Sca-1 antibody reacted with a small number of urothelial cells (Fig 6J, arrowheads). In P01 sections, Sca-1 localization overlapped the stromal compartment of the bladder (Fig 6N). It was not until P01 that we observed robust co-localization of CD34 and Sca-1 protein in the stromal layer (Fig 6M and 6N). Thus, CD34 expression precedes Sca-1 expression in the stromal mesenchyme in utero, but both are established by the first day of life.


The Murine Bladder Supports a Population of Stromal Sca-1+/CD34+/lin- Mesenchymal Stem Cells.

Lilly MA, Kulkulka NA, Firmiss PR, Ross MJ, Flum AS, Santos GB, Bowen DK, Dettman RW, Gong EM - PLoS ONE (2015)

Appearance of a Sca-1+/CD34+ cell population in the bladder stroma by postnatal day -1.Embryonic CD1 mouse bladders were stained at various time points in development for CD34 (A, E, I, M) and Sca-1 (B, F, J, N). Embryonic Sca-1egfp mouse bladders were stained at various time points for smooth muscle myosin (C, D, G, K) and CD34 (D, H, L, O, P). EGFP (green) was detected endogenously. The age of the bladders is shown to the left of the panels. In some cases the lumen of the bladder is indicated (lum). Arrowheads in (J) point to cells that have reacted with anti-Sca-1 at this stage. Arrowheads (D, H, L, P) point to EGFP expressing cells co-localized to the CD34 expressing cells of the developing stroma. Scale bars are as shown.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4634995&req=5

pone.0141437.g006: Appearance of a Sca-1+/CD34+ cell population in the bladder stroma by postnatal day -1.Embryonic CD1 mouse bladders were stained at various time points in development for CD34 (A, E, I, M) and Sca-1 (B, F, J, N). Embryonic Sca-1egfp mouse bladders were stained at various time points for smooth muscle myosin (C, D, G, K) and CD34 (D, H, L, O, P). EGFP (green) was detected endogenously. The age of the bladders is shown to the left of the panels. In some cases the lumen of the bladder is indicated (lum). Arrowheads in (J) point to cells that have reacted with anti-Sca-1 at this stage. Arrowheads (D, H, L, P) point to EGFP expressing cells co-localized to the CD34 expressing cells of the developing stroma. Scale bars are as shown.
Mentions: To investigate if stromal Sca-1+/CD34+ cells are present during fetal development we stained sections from CD1 embryonic bladders (Fig 6). As early as E14.5, CD34 expression was localized throughout the bladder wall and in portions of the differentiating smooth muscle layer of the bladder (Fig 6A). CD34 was observed throughout the E16.5 bladder, more dispersed through the bladder wall and in what appears to be a condensing stromal layer (Fig 6E). At E18.5, CD34 expressing cells were numerous in what is now clearly the stromal layer of the bladder (Fig 6I). The distribution of these cells narrowed over time to correspond to a compact stromal compartment at P01 (Fig 6M). Sca-1 protein, on the other hand, was not detected in embryonic bladders until E18.5 (Fig 6B, 6F, 6J and 6N) while it was detected in other tissues of the embryo (data not shown). At E18.5, the Sca-1 antibody reacted with a small number of urothelial cells (Fig 6J, arrowheads). In P01 sections, Sca-1 localization overlapped the stromal compartment of the bladder (Fig 6N). It was not until P01 that we observed robust co-localization of CD34 and Sca-1 protein in the stromal layer (Fig 6M and 6N). Thus, CD34 expression precedes Sca-1 expression in the stromal mesenchyme in utero, but both are established by the first day of life.

Bottom Line: These cells function normally during organ homeostasis, but become dysregulated after organ injury.These cells differentiated into other mesenchymal lineages (chondrocytes, adipocytes and osteocytes) upon culture in induction medium.Partial obstruction resulted in upregulation of fibrosis genes within the Sca-1+/CD34+/lin- population.

View Article: PubMed Central - PubMed

Affiliation: Developmental Biology, Stanley Manne Children's Research Institute, Anne and Robert H. Lurie Children's Hospital of Chicago, 225 E. Chicago Ave. Box 225, Chicago, Illinois, 60611, United States of America.

ABSTRACT
Bladder fibrosis is an undesired end point of injury of obstruction and often renders the smooth muscle layer noncompliant. In many cases, the long-term effect of bladder fibrosis is renal failure. Despite our understanding of the progression of this disease, little is known about the cellular mechanisms that lead to a remodeled bladder wall. Resident stem (progenitor) cells have been identified in various organs such as the brain, heart and lung. These cells function normally during organ homeostasis, but become dysregulated after organ injury. Here, we aimed to characterize a mesenchymal progenitor cell population as a first step in understanding its role in bladder fibrosis. Using fluorescence activated cell sorting (FACS), we identified a Sca-1+/ CD34+/ lin- (PECAM-: CD45-: Ter119-) population in the adult murine bladder. These cells were localized to the stromal layer of the adult bladder and appeared by postnatal day 1. Cultured Sca-1+/ CD34+/ lin- bladder cells self-renewed, formed colonies and spontaneously differentiated into cells expressing smooth muscle genes. These cells differentiated into other mesenchymal lineages (chondrocytes, adipocytes and osteocytes) upon culture in induction medium. Both acute and partial obstruction of the bladder reduced expression of CD34 and changed localization of Sca-1 to the urothelium. Partial obstruction resulted in upregulation of fibrosis genes within the Sca-1+/CD34+/lin- population. Our data indicate a resident, mesenchymal stem cell population in the bladder that is altered by bladder obstruction. These findings provide new information about the cellular changes in the bladder that may be associated with bladder fibrosis.

No MeSH data available.


Related in: MedlinePlus