Limits...
Boron-deficiency-responsive microRNAs and their targets in Citrus sinensis leaves.

Lu YB, Qi YP, Yang LT, Guo P, Li Y, Chen LS - BMC Plant Biol. (2015)

Bottom Line: The adaptive responses of miRNAs to B-deficiency might related to several aspects: (a) attenuation of plant growth and development by repressing auxin signaling due to decreased TIR1 level and ARF-mediated gene expression by altering the expression of miR393, miR160 and miR3946; (b) maintaining leaf phenotype and enhancing the stress tolerance by up-regulating NACs targeted by miR159, miR782, miR3946 and miR7539; (c) activation of the stress responses and antioxidant system through down-regulating the expression of miR164, miR6260, miR5929, miR6214, miR3946 and miR3446; (d) decreasing the expression of major facilitator superfamily protein genes targeted by miR5037, thus lowering B export from plants.Also, B-deficiency-induced down-regulation of miR408 might play a role in plant tolerance to B-deficiency by regulating Cu homeostasis and enhancing superoxide dismutase activity.Our study reveals some novel responses of citrus to B-deficiency, which increase our understanding of the adaptive mechanisms of citrus to B-deficiency at the miRNA (post-transcriptional) level.

View Article: PubMed Central - PubMed

Affiliation: College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.

ABSTRACT

Background: MicroRNAs play important roles in the adaptive responses of plants to nutrient deficiencies. Most research, however, has focused on nitrogen (N), phosphorus (P), sulfur (S), copper (Cu) and iron (Fe) deficiencies, limited data are available on the differential expression of miRNAs and their target genes in response to deficiencies of other nutrient elements. In this study, we identified the known and novel miRNAs as well as the boron (B)-deficiency-responsive miRNAs from citrus leaves in order to obtain the potential miRNAs related to the tolerance of citrus to B-deficiency.

Methods: Seedlings of 'Xuegan' [Citrus sinensis (L.) Osbeck] were supplied every other day with B-deficient (0 μM H3BO3) or -sufficient (10 μM H3BO3) nutrient solution for 15 weeks. Thereafter, we sequenced two small RNA libraries from B-deficient and -sufficient (control) citrus leaves, respectively, using Illumina sequencing.

Results: Ninety one (83 known and 8 novel) up- and 81 (75 known and 6 novel) down-regulated miRNAs were isolated from B-deficient leaves. The great alteration of miRNA expression might contribute to the tolerance of citrus to B-deficiency. The adaptive responses of miRNAs to B-deficiency might related to several aspects: (a) attenuation of plant growth and development by repressing auxin signaling due to decreased TIR1 level and ARF-mediated gene expression by altering the expression of miR393, miR160 and miR3946; (b) maintaining leaf phenotype and enhancing the stress tolerance by up-regulating NACs targeted by miR159, miR782, miR3946 and miR7539; (c) activation of the stress responses and antioxidant system through down-regulating the expression of miR164, miR6260, miR5929, miR6214, miR3946 and miR3446; (d) decreasing the expression of major facilitator superfamily protein genes targeted by miR5037, thus lowering B export from plants. Also, B-deficiency-induced down-regulation of miR408 might play a role in plant tolerance to B-deficiency by regulating Cu homeostasis and enhancing superoxide dismutase activity.

Conclusions: Our study reveals some novel responses of citrus to B-deficiency, which increase our understanding of the adaptive mechanisms of citrus to B-deficiency at the miRNA (post-transcriptional) level.

No MeSH data available.


Related in: MedlinePlus

Relative abundances of selected known miRNAs in B-deficient and control leaves revealed by qRT-PCR. Bars represent mean ± SD (n = 3). Significant differences were tested between control and B-deficient leaves for the same miRNA. Different letters above the bars indicate a significant difference at P < 0.05. All the values were expressed relative to the control leaves
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4634795&req=5

Fig2: Relative abundances of selected known miRNAs in B-deficient and control leaves revealed by qRT-PCR. Bars represent mean ± SD (n = 3). Significant differences were tested between control and B-deficient leaves for the same miRNA. Different letters above the bars indicate a significant difference at P < 0.05. All the values were expressed relative to the control leaves

Mentions: We analyzed the expression of 27 known miRNAs using stem-loop qRT-PCR in order to validate the miRNA expression patterns revealed by Illumina sequencing. The expression levels of all these miRNAs except for miR6214, miR5262 and miR7841 were comparable in magnitude to the expression patterns obtained by Illumiona sequencing (Fig. 2). Obviously, the high-throughput sequencing allowed us to identify the differentially expressed miRNAs under B-deficiency.Fig. 2


Boron-deficiency-responsive microRNAs and their targets in Citrus sinensis leaves.

Lu YB, Qi YP, Yang LT, Guo P, Li Y, Chen LS - BMC Plant Biol. (2015)

Relative abundances of selected known miRNAs in B-deficient and control leaves revealed by qRT-PCR. Bars represent mean ± SD (n = 3). Significant differences were tested between control and B-deficient leaves for the same miRNA. Different letters above the bars indicate a significant difference at P < 0.05. All the values were expressed relative to the control leaves
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4634795&req=5

Fig2: Relative abundances of selected known miRNAs in B-deficient and control leaves revealed by qRT-PCR. Bars represent mean ± SD (n = 3). Significant differences were tested between control and B-deficient leaves for the same miRNA. Different letters above the bars indicate a significant difference at P < 0.05. All the values were expressed relative to the control leaves
Mentions: We analyzed the expression of 27 known miRNAs using stem-loop qRT-PCR in order to validate the miRNA expression patterns revealed by Illumina sequencing. The expression levels of all these miRNAs except for miR6214, miR5262 and miR7841 were comparable in magnitude to the expression patterns obtained by Illumiona sequencing (Fig. 2). Obviously, the high-throughput sequencing allowed us to identify the differentially expressed miRNAs under B-deficiency.Fig. 2

Bottom Line: The adaptive responses of miRNAs to B-deficiency might related to several aspects: (a) attenuation of plant growth and development by repressing auxin signaling due to decreased TIR1 level and ARF-mediated gene expression by altering the expression of miR393, miR160 and miR3946; (b) maintaining leaf phenotype and enhancing the stress tolerance by up-regulating NACs targeted by miR159, miR782, miR3946 and miR7539; (c) activation of the stress responses and antioxidant system through down-regulating the expression of miR164, miR6260, miR5929, miR6214, miR3946 and miR3446; (d) decreasing the expression of major facilitator superfamily protein genes targeted by miR5037, thus lowering B export from plants.Also, B-deficiency-induced down-regulation of miR408 might play a role in plant tolerance to B-deficiency by regulating Cu homeostasis and enhancing superoxide dismutase activity.Our study reveals some novel responses of citrus to B-deficiency, which increase our understanding of the adaptive mechanisms of citrus to B-deficiency at the miRNA (post-transcriptional) level.

View Article: PubMed Central - PubMed

Affiliation: College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.

ABSTRACT

Background: MicroRNAs play important roles in the adaptive responses of plants to nutrient deficiencies. Most research, however, has focused on nitrogen (N), phosphorus (P), sulfur (S), copper (Cu) and iron (Fe) deficiencies, limited data are available on the differential expression of miRNAs and their target genes in response to deficiencies of other nutrient elements. In this study, we identified the known and novel miRNAs as well as the boron (B)-deficiency-responsive miRNAs from citrus leaves in order to obtain the potential miRNAs related to the tolerance of citrus to B-deficiency.

Methods: Seedlings of 'Xuegan' [Citrus sinensis (L.) Osbeck] were supplied every other day with B-deficient (0 μM H3BO3) or -sufficient (10 μM H3BO3) nutrient solution for 15 weeks. Thereafter, we sequenced two small RNA libraries from B-deficient and -sufficient (control) citrus leaves, respectively, using Illumina sequencing.

Results: Ninety one (83 known and 8 novel) up- and 81 (75 known and 6 novel) down-regulated miRNAs were isolated from B-deficient leaves. The great alteration of miRNA expression might contribute to the tolerance of citrus to B-deficiency. The adaptive responses of miRNAs to B-deficiency might related to several aspects: (a) attenuation of plant growth and development by repressing auxin signaling due to decreased TIR1 level and ARF-mediated gene expression by altering the expression of miR393, miR160 and miR3946; (b) maintaining leaf phenotype and enhancing the stress tolerance by up-regulating NACs targeted by miR159, miR782, miR3946 and miR7539; (c) activation of the stress responses and antioxidant system through down-regulating the expression of miR164, miR6260, miR5929, miR6214, miR3946 and miR3446; (d) decreasing the expression of major facilitator superfamily protein genes targeted by miR5037, thus lowering B export from plants. Also, B-deficiency-induced down-regulation of miR408 might play a role in plant tolerance to B-deficiency by regulating Cu homeostasis and enhancing superoxide dismutase activity.

Conclusions: Our study reveals some novel responses of citrus to B-deficiency, which increase our understanding of the adaptive mechanisms of citrus to B-deficiency at the miRNA (post-transcriptional) level.

No MeSH data available.


Related in: MedlinePlus