Limits...
Generation of an expandable intermediate mesoderm restricted progenitor cell line from human pluripotent stem cells.

Kumar N, Richter J, Cutts J, Bush KT, Trujillo C, Nigam SK, Gaasterland T, Brafman D, Willert K - Elife (2015)

Bottom Line: One way to mitigate this risk is to develop expandable progenitor cell populations with restricted differentiation potential.Here, we used a cellular microarray technology to identify a defined and optimized culture condition that supports the derivation and propagation of a cell population with mesodermal properties.Interestingly, IMP cells fail to differentiate into other mesodermally-derived tissues, including blood and heart, suggesting that these cells are restricted to an intermediate mesodermal fate.

View Article: PubMed Central - PubMed

Affiliation: Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States.

ABSTRACT
The field of tissue engineering entered a new era with the development of human pluripotent stem cells (hPSCs), which are capable of unlimited expansion whilst retaining the potential to differentiate into all mature cell populations. However, these cells harbor significant risks, including tumor formation upon transplantation. One way to mitigate this risk is to develop expandable progenitor cell populations with restricted differentiation potential. Here, we used a cellular microarray technology to identify a defined and optimized culture condition that supports the derivation and propagation of a cell population with mesodermal properties. This cell population, referred to as intermediate mesodermal progenitor (IMP) cells, is capable of unlimited expansion, lacks tumor formation potential, and, upon appropriate stimulation, readily acquires properties of a sub-population of kidney cells. Interestingly, IMP cells fail to differentiate into other mesodermally-derived tissues, including blood and heart, suggesting that these cells are restricted to an intermediate mesodermal fate.

No MeSH data available.


Related in: MedlinePlus

Staining controls relevant to Figure 9C.Samples were fixed and stained as in Figure 9C, except anti-HuNu antibody was excluded (top row) or anti-FOXD1 antibody was excluded (bottom row). The same secondary antibodies were used to demonstrate that the HuNu and FOXD1 stains are dependent on primary antibodies and are not due to non-specific binding of secondary antibodies.DOI:http://dx.doi.org/10.7554/eLife.08413.024
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4631902&req=5

fig9s2: Staining controls relevant to Figure 9C.Samples were fixed and stained as in Figure 9C, except anti-HuNu antibody was excluded (top row) or anti-FOXD1 antibody was excluded (bottom row). The same secondary antibodies were used to demonstrate that the HuNu and FOXD1 stains are dependent on primary antibodies and are not due to non-specific binding of secondary antibodies.DOI:http://dx.doi.org/10.7554/eLife.08413.024

Mentions: In a second assay, rat embryonic kidneys were dissociated to single cells and re-aggregated to form kidney-like organoids (Unbekandt and Davies, 2010; Davies and Chang, 2014). These aggregation experiments were performed in the presence of either IMP-derived MM cells (Figure 9A) or undifferentiated hES cells (control), thereby assessing the renal potential of these cells. The contribution of human cells to the re-aggregated rat kidneys is readily detected by staining for the human specific nuclear antigen (HuNu). In this assay, we consistently observed efficient incorporation of IMP-derived MM cells into the kidney organoids (Figure 9B, Figure 9—figure supplement 1). Interestingly, we primarily observed incorporation of these cells into the mesenchyme surrounding epithelial structures, which were visualized by staining with lectin Dolichos biflorus agglutinin (DBA). Furthermore, incorporated human cells expressed FOXD1, the expression of which is restricted to metanephric stromal mesenchyme (Hatini et al., 1996) and stained with LTL (Figure 9C, Figure 9—figure supplement 2). In contrast, undifferentiated hES cells failed to incorporate into these kidney organoids (Figure 9D, Figure 9—figure supplement 3) and instead were found adjacent to the organoid structures (Figure 9—figure supplement 3, bottom row). Taken together, these co-culture experiments establish that IMP cells efficiently incorporated into the developing kidney.10.7554/eLife.08413.022Figure 9.Incorporation of IMP cells into kidney mesenchyme.


Generation of an expandable intermediate mesoderm restricted progenitor cell line from human pluripotent stem cells.

Kumar N, Richter J, Cutts J, Bush KT, Trujillo C, Nigam SK, Gaasterland T, Brafman D, Willert K - Elife (2015)

Staining controls relevant to Figure 9C.Samples were fixed and stained as in Figure 9C, except anti-HuNu antibody was excluded (top row) or anti-FOXD1 antibody was excluded (bottom row). The same secondary antibodies were used to demonstrate that the HuNu and FOXD1 stains are dependent on primary antibodies and are not due to non-specific binding of secondary antibodies.DOI:http://dx.doi.org/10.7554/eLife.08413.024
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4631902&req=5

fig9s2: Staining controls relevant to Figure 9C.Samples were fixed and stained as in Figure 9C, except anti-HuNu antibody was excluded (top row) or anti-FOXD1 antibody was excluded (bottom row). The same secondary antibodies were used to demonstrate that the HuNu and FOXD1 stains are dependent on primary antibodies and are not due to non-specific binding of secondary antibodies.DOI:http://dx.doi.org/10.7554/eLife.08413.024
Mentions: In a second assay, rat embryonic kidneys were dissociated to single cells and re-aggregated to form kidney-like organoids (Unbekandt and Davies, 2010; Davies and Chang, 2014). These aggregation experiments were performed in the presence of either IMP-derived MM cells (Figure 9A) or undifferentiated hES cells (control), thereby assessing the renal potential of these cells. The contribution of human cells to the re-aggregated rat kidneys is readily detected by staining for the human specific nuclear antigen (HuNu). In this assay, we consistently observed efficient incorporation of IMP-derived MM cells into the kidney organoids (Figure 9B, Figure 9—figure supplement 1). Interestingly, we primarily observed incorporation of these cells into the mesenchyme surrounding epithelial structures, which were visualized by staining with lectin Dolichos biflorus agglutinin (DBA). Furthermore, incorporated human cells expressed FOXD1, the expression of which is restricted to metanephric stromal mesenchyme (Hatini et al., 1996) and stained with LTL (Figure 9C, Figure 9—figure supplement 2). In contrast, undifferentiated hES cells failed to incorporate into these kidney organoids (Figure 9D, Figure 9—figure supplement 3) and instead were found adjacent to the organoid structures (Figure 9—figure supplement 3, bottom row). Taken together, these co-culture experiments establish that IMP cells efficiently incorporated into the developing kidney.10.7554/eLife.08413.022Figure 9.Incorporation of IMP cells into kidney mesenchyme.

Bottom Line: One way to mitigate this risk is to develop expandable progenitor cell populations with restricted differentiation potential.Here, we used a cellular microarray technology to identify a defined and optimized culture condition that supports the derivation and propagation of a cell population with mesodermal properties.Interestingly, IMP cells fail to differentiate into other mesodermally-derived tissues, including blood and heart, suggesting that these cells are restricted to an intermediate mesodermal fate.

View Article: PubMed Central - PubMed

Affiliation: Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States.

ABSTRACT
The field of tissue engineering entered a new era with the development of human pluripotent stem cells (hPSCs), which are capable of unlimited expansion whilst retaining the potential to differentiate into all mature cell populations. However, these cells harbor significant risks, including tumor formation upon transplantation. One way to mitigate this risk is to develop expandable progenitor cell populations with restricted differentiation potential. Here, we used a cellular microarray technology to identify a defined and optimized culture condition that supports the derivation and propagation of a cell population with mesodermal properties. This cell population, referred to as intermediate mesodermal progenitor (IMP) cells, is capable of unlimited expansion, lacks tumor formation potential, and, upon appropriate stimulation, readily acquires properties of a sub-population of kidney cells. Interestingly, IMP cells fail to differentiate into other mesodermally-derived tissues, including blood and heart, suggesting that these cells are restricted to an intermediate mesodermal fate.

No MeSH data available.


Related in: MedlinePlus