Limits...
Improving the optimized shea butter quality: a great potential of utilization for common consumers and industrials.

Megnanou RM, Niamke S - Springerplus (2015)

Bottom Line: The UV-Vis spectrum showed a high peak at 300 nm and a rapid decrease from 300 to 500 nm when the near infra-red one, revealed peaks at 450, 1200, 1400, 1725 and 2150 nm for all the samples.The samples also contained essential minerals (Calcium, magnesium, zinc, iron, etc.) carotene (550 ± 50 and 544 ± 50 ppm), vitamins A (0.065 ± 0.001 and 0.032 ± 0.001 µg/g) and E (2992.09 ± 1.90 and 3788.44 ± 1.90 ppm) in relatively important amounts; neither microbiological germs nor heavy were detected.All these valorizing characteristics would confer to the optimized shea butters good aptitude for exportation and exploitation in food, cosmetic and pharmaceutical industries.

View Article: PubMed Central - PubMed

Affiliation: Laboratoire de Biotechnologies, UFR Biosciences, Université Félix Houphouët-Boigny, 22 BP 582, Abidjan 22, Côte d'Ivoire.

ABSTRACT
Industrials interest in fats as raw material, resides in their exceptional quality and potentialities of exploitation in several fields. This study aimed to exalt the optimized shea butter quality and present its wide potentialities of utilization. Hence, the characteristics of beige and yellow optimized shea butters were determined. Both samples recorded very weak acid (0.280 ± 0.001 and 0.140 ± 0.001 mgKOH/g) and peroxide (0.960 ± 0.001 and 1.010 ± 0.001 mEgO2/kg) indexes, when the iodine indexes (52.64 ± 0.20 and 53.06 ± 0.20 gI2/100 g) and the unsaponifiable matters (17.61 ± 0.01 and 17.27 ± 0.01 %) were considerable. The refractive indexes (1.454 ± 0.00 and 1.453 ± 0.00) and the pH (6.50 ± 0.30 and 6.78 ± 0.30) were statistically similar; but the specific gravity (0.915 ± 0.01-0.79 ± 0.01 and 0.94 ± 0.01-0.83 ± 0.01) and the viscosity (90.41 ± 0.20-20.02 ± 0.20 and 125.37 ± 0.20-23.55 ± 0.20 MPas) differed and decreased exponentially with the temperature increasing (35-65 °C), except for the specific gravity of the yellow butter which decreased linearly. The UV-Vis spectrum showed a high peak at 300 nm and a rapid decrease from 300 to 500 nm when the near infra-red one, revealed peaks at 450, 1200, 1400, 1725 and 2150 nm for all the samples. The chromatographic profile identified palmitic (16.42 and 26.36 %), stearic (32.39 and 36.36 %), oleic (38.12 and 29.09 %), linoleic (9.72 and 5.92 %) and arachidic (1.84 and 1.59 %) acids, and also exaltolide compound (1.51 and 0.68 %). The samples also contained essential minerals (Calcium, magnesium, zinc, iron, etc.) carotene (550 ± 50 and 544 ± 50 ppm), vitamins A (0.065 ± 0.001 and 0.032 ± 0.001 µg/g) and E (2992.09 ± 1.90 and 3788.44 ± 1.90 ppm) in relatively important amounts; neither microbiological germs nor heavy were detected. All these valorizing characteristics would confer to the optimized shea butters good aptitude for exportation and exploitation in food, cosmetic and pharmaceutical industries.

No MeSH data available.


Related in: MedlinePlus

Optimized shea butters fatty acids component and content
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4631807&req=5

Fig5: Optimized shea butters fatty acids component and content

Mentions: Concerning the fatty acids composition (Fig. 5), it should underline the high nutritive potential of the optimized shea butters. Indeed, in addition to the carotene, vitamins A and E which would be powerful antioxidant, these butters contain, the fatty acids profile revealed the presence of essential fatty acids (EFA) such as oleic (38.12 and 29.09 % for beige and yellow shea butters, respectively) and linoleic (9.72 and 5.92 % for beige and yellow shea butters, respectively) acids. Their proportions were relatively important, mainly in the beige shea butter and would suggest the possibility of extracting a liquid fraction like “olein de karite” of Burkina Faso. Such fraction could be consumed without heating, preserving hence, vitamins (A and E), carotene and other thermo-sensible moleculars from destruction. It is worth underlining the relatively important amount of oleic acid and oleic/linoleic acids (3.92 and 4.91, for beige and yellow shea butters, respectively) ratio; such disposition would confer to the optimized shea butters the quality of very interesting dietetic fat in cardiovascular, inflammatory, autoimmune diseases and cancer prevention (Harris 2006; Simopoulos 2008). They could them be recommended for usual consumption like colza and sunflower oils which are considered nowadays as the best dietetic oil on markets. The solid fraction of the shea butters which will be constituted by stearic (32.39 and 36.36 % for beige and yellow shea butters, respectively) and palmitic (16.42 and 26.36 % for beige and yellow shea butters, respectively) acids could for it, be involved in margarine and in baking pastes to get leafy-pastes as reported by Pesquet (1992) about shea butter exploitation in bakery.Fig. 5


Improving the optimized shea butter quality: a great potential of utilization for common consumers and industrials.

Megnanou RM, Niamke S - Springerplus (2015)

Optimized shea butters fatty acids component and content
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4631807&req=5

Fig5: Optimized shea butters fatty acids component and content
Mentions: Concerning the fatty acids composition (Fig. 5), it should underline the high nutritive potential of the optimized shea butters. Indeed, in addition to the carotene, vitamins A and E which would be powerful antioxidant, these butters contain, the fatty acids profile revealed the presence of essential fatty acids (EFA) such as oleic (38.12 and 29.09 % for beige and yellow shea butters, respectively) and linoleic (9.72 and 5.92 % for beige and yellow shea butters, respectively) acids. Their proportions were relatively important, mainly in the beige shea butter and would suggest the possibility of extracting a liquid fraction like “olein de karite” of Burkina Faso. Such fraction could be consumed without heating, preserving hence, vitamins (A and E), carotene and other thermo-sensible moleculars from destruction. It is worth underlining the relatively important amount of oleic acid and oleic/linoleic acids (3.92 and 4.91, for beige and yellow shea butters, respectively) ratio; such disposition would confer to the optimized shea butters the quality of very interesting dietetic fat in cardiovascular, inflammatory, autoimmune diseases and cancer prevention (Harris 2006; Simopoulos 2008). They could them be recommended for usual consumption like colza and sunflower oils which are considered nowadays as the best dietetic oil on markets. The solid fraction of the shea butters which will be constituted by stearic (32.39 and 36.36 % for beige and yellow shea butters, respectively) and palmitic (16.42 and 26.36 % for beige and yellow shea butters, respectively) acids could for it, be involved in margarine and in baking pastes to get leafy-pastes as reported by Pesquet (1992) about shea butter exploitation in bakery.Fig. 5

Bottom Line: The UV-Vis spectrum showed a high peak at 300 nm and a rapid decrease from 300 to 500 nm when the near infra-red one, revealed peaks at 450, 1200, 1400, 1725 and 2150 nm for all the samples.The samples also contained essential minerals (Calcium, magnesium, zinc, iron, etc.) carotene (550 ± 50 and 544 ± 50 ppm), vitamins A (0.065 ± 0.001 and 0.032 ± 0.001 µg/g) and E (2992.09 ± 1.90 and 3788.44 ± 1.90 ppm) in relatively important amounts; neither microbiological germs nor heavy were detected.All these valorizing characteristics would confer to the optimized shea butters good aptitude for exportation and exploitation in food, cosmetic and pharmaceutical industries.

View Article: PubMed Central - PubMed

Affiliation: Laboratoire de Biotechnologies, UFR Biosciences, Université Félix Houphouët-Boigny, 22 BP 582, Abidjan 22, Côte d'Ivoire.

ABSTRACT
Industrials interest in fats as raw material, resides in their exceptional quality and potentialities of exploitation in several fields. This study aimed to exalt the optimized shea butter quality and present its wide potentialities of utilization. Hence, the characteristics of beige and yellow optimized shea butters were determined. Both samples recorded very weak acid (0.280 ± 0.001 and 0.140 ± 0.001 mgKOH/g) and peroxide (0.960 ± 0.001 and 1.010 ± 0.001 mEgO2/kg) indexes, when the iodine indexes (52.64 ± 0.20 and 53.06 ± 0.20 gI2/100 g) and the unsaponifiable matters (17.61 ± 0.01 and 17.27 ± 0.01 %) were considerable. The refractive indexes (1.454 ± 0.00 and 1.453 ± 0.00) and the pH (6.50 ± 0.30 and 6.78 ± 0.30) were statistically similar; but the specific gravity (0.915 ± 0.01-0.79 ± 0.01 and 0.94 ± 0.01-0.83 ± 0.01) and the viscosity (90.41 ± 0.20-20.02 ± 0.20 and 125.37 ± 0.20-23.55 ± 0.20 MPas) differed and decreased exponentially with the temperature increasing (35-65 °C), except for the specific gravity of the yellow butter which decreased linearly. The UV-Vis spectrum showed a high peak at 300 nm and a rapid decrease from 300 to 500 nm when the near infra-red one, revealed peaks at 450, 1200, 1400, 1725 and 2150 nm for all the samples. The chromatographic profile identified palmitic (16.42 and 26.36 %), stearic (32.39 and 36.36 %), oleic (38.12 and 29.09 %), linoleic (9.72 and 5.92 %) and arachidic (1.84 and 1.59 %) acids, and also exaltolide compound (1.51 and 0.68 %). The samples also contained essential minerals (Calcium, magnesium, zinc, iron, etc.) carotene (550 ± 50 and 544 ± 50 ppm), vitamins A (0.065 ± 0.001 and 0.032 ± 0.001 µg/g) and E (2992.09 ± 1.90 and 3788.44 ± 1.90 ppm) in relatively important amounts; neither microbiological germs nor heavy were detected. All these valorizing characteristics would confer to the optimized shea butters good aptitude for exportation and exploitation in food, cosmetic and pharmaceutical industries.

No MeSH data available.


Related in: MedlinePlus