Limits...
Effects of Climate Change on Habitat Availability and Configuration for an Endemic Coastal Alpine Bird.

Jackson MM, Gergel SE, Martin K - PLoS ONE (2015)

Bottom Line: Habitat patches are predicted to become fragmented, with a 52-79% reduction in mean patch size.Much will depend on their ability to move throughout a more heterogeneous landscape, utilize smaller breeding areas, and survive increasingly variable climate extremes.Our results emphasize the importance of continued monitoring and protection for high elevation specialist species, and suggest that White-tailed Ptarmigan should be considered an indicator species for alpine ecosystems in the face of climate change.

View Article: PubMed Central - PubMed

Affiliation: Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia, V6T 1Z4, Canada.

ABSTRACT
North America's coastal mountains are particularly vulnerable to climate change, yet harbour a number of endemic species. With little room "at the top" to track shifting climate envelopes, alpine species may be especially negatively affected by climate-induced habitat fragmentation. We ask how climate change will affect the total amount, mean patch size, and number of patches of suitable habitat for Vancouver Island White-tailed Ptarmigan (Lagopus leucura saxatilis; VIWTP), a threatened, endemic alpine bird. Using a Random Forest model and a unique dataset consisting of citizen science observations combined with field surveys, we predict the distribution and configuration of potential suitable summer habitat for VIWTP under baseline and future (2020s, 2050s, and 2080s) climates using three general circulation models and two greenhouse gas scenarios. VIWTP summer habitat is predicted to decline by an average of 25%, 44%, and 56% by the 2020s, 2050s, and 2080s, respectively, under the low greenhouse gas scenario and 27%, 59%, and 74% under the high scenario. Habitat patches are predicted to become fragmented, with a 52-79% reduction in mean patch size. The average elevation of suitable habitat patches is expected to increase, reflecting a loss of patches at lower elevations. Thus ptarmigan are in danger of being "squeezed off the mountain", as their remaining suitable habitat will be increasingly confined to mountaintops in the center of the island. The extent to which ptarmigan will be able to persist in increasingly fragmented habitat is unclear. Much will depend on their ability to move throughout a more heterogeneous landscape, utilize smaller breeding areas, and survive increasingly variable climate extremes. Our results emphasize the importance of continued monitoring and protection for high elevation specialist species, and suggest that White-tailed Ptarmigan should be considered an indicator species for alpine ecosystems in the face of climate change.

No MeSH data available.


Related in: MedlinePlus

Predicted changes in mean summer temperature (a), mean summer precipitation (b) and precipitation as snow (c) according to three general circulation models (GCMs): CanESM2 (Can), CCSM4 (CCSM), and GFDL-CM3 (GFDL), and two IPCC emissions scenarios (RCP 4.5 and RCP 8.5) for Vancouver Island.The RCP 4.5 scenario is displayed using dotted lines while the RCP 8.5 scenario is displayed using solid lines. Line weights correspond to the three GCMs (thick = Can, medium = GFDL, thin = CCSM).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4631505&req=5

pone.0142110.g002: Predicted changes in mean summer temperature (a), mean summer precipitation (b) and precipitation as snow (c) according to three general circulation models (GCMs): CanESM2 (Can), CCSM4 (CCSM), and GFDL-CM3 (GFDL), and two IPCC emissions scenarios (RCP 4.5 and RCP 8.5) for Vancouver Island.The RCP 4.5 scenario is displayed using dotted lines while the RCP 8.5 scenario is displayed using solid lines. Line weights correspond to the three GCMs (thick = Can, medium = GFDL, thin = CCSM).

Mentions: To model the distribution of VIWTP in the future, we extracted the above climate predictors from ClimateBC for the 2020s (2010–2039), 2050s (2040–2069), and 2080s (2070–2099) across three general circulation models (GCMs): CanESM2 from the Canadian Centre for Climate Modelling and Analysis, CCSM4 from the National Center for Atmospheric Research, and GFDL-CM3 from the Geophysical Fluid Dynamics Laboratory, and two Representative Concentration Pathways (RCPs) from the International Panel on Climate Change AR5 report: RCP 4.5 and RCP 8.5. We chose these three GCMs to represent a range of possible climate futures on Vancouver Island based on scatter plots of future temperature and precipitation using all 16 GCMs made available through ClimateBC. The GFDL model predicts a hot, moderately wet future, the CanESM2 model predicts a hot, very wet future, and the CCSM model predicts the least change in both temperature and precipitation (Fig 2). The RCP 4.5 scenario represents lower future greenhouse gas concentrations and more conservative predictions of climate change, whereas the RCP 8.5 scenario represents higher future greenhouse gas concentrations and a more extreme climate change scenario. In order to predict future ptarmigan distribution, we extracted the three climate predictors for every cell in the 100-m DEM covering all of Vancouver Island for each GCM and greenhouse gas scenario combination.


Effects of Climate Change on Habitat Availability and Configuration for an Endemic Coastal Alpine Bird.

Jackson MM, Gergel SE, Martin K - PLoS ONE (2015)

Predicted changes in mean summer temperature (a), mean summer precipitation (b) and precipitation as snow (c) according to three general circulation models (GCMs): CanESM2 (Can), CCSM4 (CCSM), and GFDL-CM3 (GFDL), and two IPCC emissions scenarios (RCP 4.5 and RCP 8.5) for Vancouver Island.The RCP 4.5 scenario is displayed using dotted lines while the RCP 8.5 scenario is displayed using solid lines. Line weights correspond to the three GCMs (thick = Can, medium = GFDL, thin = CCSM).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4631505&req=5

pone.0142110.g002: Predicted changes in mean summer temperature (a), mean summer precipitation (b) and precipitation as snow (c) according to three general circulation models (GCMs): CanESM2 (Can), CCSM4 (CCSM), and GFDL-CM3 (GFDL), and two IPCC emissions scenarios (RCP 4.5 and RCP 8.5) for Vancouver Island.The RCP 4.5 scenario is displayed using dotted lines while the RCP 8.5 scenario is displayed using solid lines. Line weights correspond to the three GCMs (thick = Can, medium = GFDL, thin = CCSM).
Mentions: To model the distribution of VIWTP in the future, we extracted the above climate predictors from ClimateBC for the 2020s (2010–2039), 2050s (2040–2069), and 2080s (2070–2099) across three general circulation models (GCMs): CanESM2 from the Canadian Centre for Climate Modelling and Analysis, CCSM4 from the National Center for Atmospheric Research, and GFDL-CM3 from the Geophysical Fluid Dynamics Laboratory, and two Representative Concentration Pathways (RCPs) from the International Panel on Climate Change AR5 report: RCP 4.5 and RCP 8.5. We chose these three GCMs to represent a range of possible climate futures on Vancouver Island based on scatter plots of future temperature and precipitation using all 16 GCMs made available through ClimateBC. The GFDL model predicts a hot, moderately wet future, the CanESM2 model predicts a hot, very wet future, and the CCSM model predicts the least change in both temperature and precipitation (Fig 2). The RCP 4.5 scenario represents lower future greenhouse gas concentrations and more conservative predictions of climate change, whereas the RCP 8.5 scenario represents higher future greenhouse gas concentrations and a more extreme climate change scenario. In order to predict future ptarmigan distribution, we extracted the three climate predictors for every cell in the 100-m DEM covering all of Vancouver Island for each GCM and greenhouse gas scenario combination.

Bottom Line: Habitat patches are predicted to become fragmented, with a 52-79% reduction in mean patch size.Much will depend on their ability to move throughout a more heterogeneous landscape, utilize smaller breeding areas, and survive increasingly variable climate extremes.Our results emphasize the importance of continued monitoring and protection for high elevation specialist species, and suggest that White-tailed Ptarmigan should be considered an indicator species for alpine ecosystems in the face of climate change.

View Article: PubMed Central - PubMed

Affiliation: Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia, V6T 1Z4, Canada.

ABSTRACT
North America's coastal mountains are particularly vulnerable to climate change, yet harbour a number of endemic species. With little room "at the top" to track shifting climate envelopes, alpine species may be especially negatively affected by climate-induced habitat fragmentation. We ask how climate change will affect the total amount, mean patch size, and number of patches of suitable habitat for Vancouver Island White-tailed Ptarmigan (Lagopus leucura saxatilis; VIWTP), a threatened, endemic alpine bird. Using a Random Forest model and a unique dataset consisting of citizen science observations combined with field surveys, we predict the distribution and configuration of potential suitable summer habitat for VIWTP under baseline and future (2020s, 2050s, and 2080s) climates using three general circulation models and two greenhouse gas scenarios. VIWTP summer habitat is predicted to decline by an average of 25%, 44%, and 56% by the 2020s, 2050s, and 2080s, respectively, under the low greenhouse gas scenario and 27%, 59%, and 74% under the high scenario. Habitat patches are predicted to become fragmented, with a 52-79% reduction in mean patch size. The average elevation of suitable habitat patches is expected to increase, reflecting a loss of patches at lower elevations. Thus ptarmigan are in danger of being "squeezed off the mountain", as their remaining suitable habitat will be increasingly confined to mountaintops in the center of the island. The extent to which ptarmigan will be able to persist in increasingly fragmented habitat is unclear. Much will depend on their ability to move throughout a more heterogeneous landscape, utilize smaller breeding areas, and survive increasingly variable climate extremes. Our results emphasize the importance of continued monitoring and protection for high elevation specialist species, and suggest that White-tailed Ptarmigan should be considered an indicator species for alpine ecosystems in the face of climate change.

No MeSH data available.


Related in: MedlinePlus