Limits...
Sulforaphane Bioavailability from Glucoraphanin-Rich Broccoli: Control by Active Endogenous Myrosinase.

Fahey JW, Holtzclaw WD, Wehage SL, Wade KL, Stephenson KK, Talalay P - PLoS ONE (2015)

Bottom Line: Sulforaphane is difficult to deliver in an enriched and stable form for purposes of direct human consumption.We show that following administration of glucoraphanin in a commercially prepared dietary supplement to a small number of human volunteers, the volunteers had equivalent output of sulforaphane metabolites in their urine to that which they produced when given an equimolar dose of glucoraphanin in a simple boiled and lyophilized extract of broccoli sprouts.These data expand upon earlier reports of inter- and intra-individual variability, when glucoraphanin was delivered in either teas, juices, or gelatin capsules, and they confirm that a variety of delivery matrices may be equally suitable for glucoraphanin supplementation (e.g. fruit juices, water, or various types of capsules and tablets).

View Article: PubMed Central - PubMed

Affiliation: Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America; Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America.

ABSTRACT
Glucoraphanin from broccoli and its sprouts and seeds is a water soluble and relatively inert precursor of sulforaphane, the reactive isothiocyanate that potently inhibits neoplastic cellular processes and prevents a number of disease states. Sulforaphane is difficult to deliver in an enriched and stable form for purposes of direct human consumption. We have focused upon evaluating the bioavailability of sulforaphane, either by direct administration of glucoraphanin (a glucosinolate, or β-thioglucoside-N-hydroxysulfate), or by co-administering glucoraphanin and the enzyme myrosinase to catalyze its conversion to sulforaphane at economic, reproducible and sustainable yields. We show that following administration of glucoraphanin in a commercially prepared dietary supplement to a small number of human volunteers, the volunteers had equivalent output of sulforaphane metabolites in their urine to that which they produced when given an equimolar dose of glucoraphanin in a simple boiled and lyophilized extract of broccoli sprouts. Furthermore, when either broccoli sprouts or seeds are administered directly to subjects without prior extraction and consequent inactivation of endogenous myrosinase, regardless of the delivery matrix or dose, the sulforaphane in those preparations is 3- to 4-fold more bioavailable than sulforaphane from glucoraphanin delivered without active plant myrosinase. These data expand upon earlier reports of inter- and intra-individual variability, when glucoraphanin was delivered in either teas, juices, or gelatin capsules, and they confirm that a variety of delivery matrices may be equally suitable for glucoraphanin supplementation (e.g. fruit juices, water, or various types of capsules and tablets).

No MeSH data available.


Mean daily excretion / conversion of broccoli seed powder (BSdP) containing active myrosinase, to SF metabolites.Preparations were delivered in standard gel-caps. The same 5 subjects performed each test (Table 1, Cohort 4). There was no significant difference between replications (p = 0.3747 using a repeated measures analysis of variance). The mean conversion of all 3 replicates was 36% of dose.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4629881&req=5

pone.0140963.g004: Mean daily excretion / conversion of broccoli seed powder (BSdP) containing active myrosinase, to SF metabolites.Preparations were delivered in standard gel-caps. The same 5 subjects performed each test (Table 1, Cohort 4). There was no significant difference between replications (p = 0.3747 using a repeated measures analysis of variance). The mean conversion of all 3 replicates was 36% of dose.

Mentions: In contrast to the availability from SF- or GR-rich extracts, when an active source of the enzyme myrosinase (which converts GR to SF both in the plant, in vitro, and in vivo) was added in the form of either broccoli sprouts or seeds, about 40% of the dose was recovered following delivery either in juice, standard gel-caps, or acid-resistant gel-caps (Table 1and Figs 1, 3and 4). Freeze-dried broccoli sprouts alone contains substantial endogenous myrosinase activity (S2 Table) that is sufficient to convert GR to SF either when mixed in a dilute pineapple-lime juice carrier [15] just prior to dosing, when packaged in gel-caps that are presumed to release their contents to the stomach, or when packaged in acid-resistant gel-caps calibrated to release their contents only upon passage to the upper small intestine (Fig 3). Bioavailability in juice (40%) was about the same as bioavailability in capsules (34%).


Sulforaphane Bioavailability from Glucoraphanin-Rich Broccoli: Control by Active Endogenous Myrosinase.

Fahey JW, Holtzclaw WD, Wehage SL, Wade KL, Stephenson KK, Talalay P - PLoS ONE (2015)

Mean daily excretion / conversion of broccoli seed powder (BSdP) containing active myrosinase, to SF metabolites.Preparations were delivered in standard gel-caps. The same 5 subjects performed each test (Table 1, Cohort 4). There was no significant difference between replications (p = 0.3747 using a repeated measures analysis of variance). The mean conversion of all 3 replicates was 36% of dose.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4629881&req=5

pone.0140963.g004: Mean daily excretion / conversion of broccoli seed powder (BSdP) containing active myrosinase, to SF metabolites.Preparations were delivered in standard gel-caps. The same 5 subjects performed each test (Table 1, Cohort 4). There was no significant difference between replications (p = 0.3747 using a repeated measures analysis of variance). The mean conversion of all 3 replicates was 36% of dose.
Mentions: In contrast to the availability from SF- or GR-rich extracts, when an active source of the enzyme myrosinase (which converts GR to SF both in the plant, in vitro, and in vivo) was added in the form of either broccoli sprouts or seeds, about 40% of the dose was recovered following delivery either in juice, standard gel-caps, or acid-resistant gel-caps (Table 1and Figs 1, 3and 4). Freeze-dried broccoli sprouts alone contains substantial endogenous myrosinase activity (S2 Table) that is sufficient to convert GR to SF either when mixed in a dilute pineapple-lime juice carrier [15] just prior to dosing, when packaged in gel-caps that are presumed to release their contents to the stomach, or when packaged in acid-resistant gel-caps calibrated to release their contents only upon passage to the upper small intestine (Fig 3). Bioavailability in juice (40%) was about the same as bioavailability in capsules (34%).

Bottom Line: Sulforaphane is difficult to deliver in an enriched and stable form for purposes of direct human consumption.We show that following administration of glucoraphanin in a commercially prepared dietary supplement to a small number of human volunteers, the volunteers had equivalent output of sulforaphane metabolites in their urine to that which they produced when given an equimolar dose of glucoraphanin in a simple boiled and lyophilized extract of broccoli sprouts.These data expand upon earlier reports of inter- and intra-individual variability, when glucoraphanin was delivered in either teas, juices, or gelatin capsules, and they confirm that a variety of delivery matrices may be equally suitable for glucoraphanin supplementation (e.g. fruit juices, water, or various types of capsules and tablets).

View Article: PubMed Central - PubMed

Affiliation: Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America; Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America.

ABSTRACT
Glucoraphanin from broccoli and its sprouts and seeds is a water soluble and relatively inert precursor of sulforaphane, the reactive isothiocyanate that potently inhibits neoplastic cellular processes and prevents a number of disease states. Sulforaphane is difficult to deliver in an enriched and stable form for purposes of direct human consumption. We have focused upon evaluating the bioavailability of sulforaphane, either by direct administration of glucoraphanin (a glucosinolate, or β-thioglucoside-N-hydroxysulfate), or by co-administering glucoraphanin and the enzyme myrosinase to catalyze its conversion to sulforaphane at economic, reproducible and sustainable yields. We show that following administration of glucoraphanin in a commercially prepared dietary supplement to a small number of human volunteers, the volunteers had equivalent output of sulforaphane metabolites in their urine to that which they produced when given an equimolar dose of glucoraphanin in a simple boiled and lyophilized extract of broccoli sprouts. Furthermore, when either broccoli sprouts or seeds are administered directly to subjects without prior extraction and consequent inactivation of endogenous myrosinase, regardless of the delivery matrix or dose, the sulforaphane in those preparations is 3- to 4-fold more bioavailable than sulforaphane from glucoraphanin delivered without active plant myrosinase. These data expand upon earlier reports of inter- and intra-individual variability, when glucoraphanin was delivered in either teas, juices, or gelatin capsules, and they confirm that a variety of delivery matrices may be equally suitable for glucoraphanin supplementation (e.g. fruit juices, water, or various types of capsules and tablets).

No MeSH data available.