Limits...
How previous experience shapes perception in different sensory modalities

View Article: PubMed Central

ABSTRACT

What has transpired immediately before has a strong influence on how sensory stimuli are processed and perceived. In particular, temporal context can have contrastive effects, repelling perception away from the interpretation of the context stimulus, and attractive effects (TCEs), whereby perception repeats upon successive presentations of the same stimulus. For decades, scientists have documented contrastive and attractive temporal context effects mostly with simple visual stimuli. But both types of effects also occur in other modalities, e.g., audition and touch, and for stimuli of varying complexity, raising the possibility that context effects reflect general computational principles of sensory systems. Neuroimaging shows that contrastive and attractive context effects arise from neural processes in different areas of the cerebral cortex, suggesting two separate operations with distinct functional roles. Bayesian models can provide a functional account of both context effects, whereby prior experience adjusts sensory systems to optimize perception of future stimuli.

No MeSH data available.


Related in: MedlinePlus

Examples of contrastive and attractive TCEs in vision and hearing. (A) In the famous tilt aftereffect, prolonged viewing of tilted lines (context) causes subsequently presented, straight lines (test) to be perceived as tilted in the opposite direction (perceive), a contrastive TCE. (B) When two ambiguous Necker cubes are presented in temporal succession, the perceived orientation of the first Necker cube (context) often determines the perceived orientation of the second Necker cube (test), although all interpretations are equally likely when the same Necker cube is presented in isolation. For example, if the first cube is perceived as facing up (down), this will provide the context for the second cube, which will be perceived as facing up (down), too. This stabilization of perception is an attractive TCE. (C) In the auditory stream segregation paradigm, the test tones have a constant ambiguous Δf throughout the duration of the experiment. When the Δf of the context is larger than the test, this typically leads to a contrastive effect, whereby listeners perceive the context as two separate streams and the test as one stream. (D) When the Δf of the context is the same ambiguous Δf as the test, this typically leads to listeners reporting that they hear the same percept as they had for the context (e.g., if they heard two streams for the context, they are more likely to hear two streams for the test).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4628108&req=5

Figure 1: Examples of contrastive and attractive TCEs in vision and hearing. (A) In the famous tilt aftereffect, prolonged viewing of tilted lines (context) causes subsequently presented, straight lines (test) to be perceived as tilted in the opposite direction (perceive), a contrastive TCE. (B) When two ambiguous Necker cubes are presented in temporal succession, the perceived orientation of the first Necker cube (context) often determines the perceived orientation of the second Necker cube (test), although all interpretations are equally likely when the same Necker cube is presented in isolation. For example, if the first cube is perceived as facing up (down), this will provide the context for the second cube, which will be perceived as facing up (down), too. This stabilization of perception is an attractive TCE. (C) In the auditory stream segregation paradigm, the test tones have a constant ambiguous Δf throughout the duration of the experiment. When the Δf of the context is larger than the test, this typically leads to a contrastive effect, whereby listeners perceive the context as two separate streams and the test as one stream. (D) When the Δf of the context is the same ambiguous Δf as the test, this typically leads to listeners reporting that they hear the same percept as they had for the context (e.g., if they heard two streams for the context, they are more likely to hear two streams for the test).

Mentions: Two TCEs have been investigated most extensively: the first typically occurs when a non-ambiguous, salient context stimulus (e.g., leftward tilted lines) precedes a test stimulus (e.g., vertically oriented lines), which results in perception being repelled away from the interpretation of the context stimulus such that participants perceive the test stimulus lines as tilted rightward (Figure 1A). Similarly, in the waterfall illusion, also known as the motion aftereffect, a rock on the side of the stream is usually perceived as moving upward after staring at the downward motion of the waterfall (Addams, 1834). This contrastive effect is known as adaptation, negative aftereffect, or habituation. There is considerable evidence that it results from neural adaptation, which in turn alters the balance of population activity, thus favoring perception of features that are not adapted (Grunewald and Lankheet, 1996; Huk et al., 2001).


How previous experience shapes perception in different sensory modalities
Examples of contrastive and attractive TCEs in vision and hearing. (A) In the famous tilt aftereffect, prolonged viewing of tilted lines (context) causes subsequently presented, straight lines (test) to be perceived as tilted in the opposite direction (perceive), a contrastive TCE. (B) When two ambiguous Necker cubes are presented in temporal succession, the perceived orientation of the first Necker cube (context) often determines the perceived orientation of the second Necker cube (test), although all interpretations are equally likely when the same Necker cube is presented in isolation. For example, if the first cube is perceived as facing up (down), this will provide the context for the second cube, which will be perceived as facing up (down), too. This stabilization of perception is an attractive TCE. (C) In the auditory stream segregation paradigm, the test tones have a constant ambiguous Δf throughout the duration of the experiment. When the Δf of the context is larger than the test, this typically leads to a contrastive effect, whereby listeners perceive the context as two separate streams and the test as one stream. (D) When the Δf of the context is the same ambiguous Δf as the test, this typically leads to listeners reporting that they hear the same percept as they had for the context (e.g., if they heard two streams for the context, they are more likely to hear two streams for the test).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4628108&req=5

Figure 1: Examples of contrastive and attractive TCEs in vision and hearing. (A) In the famous tilt aftereffect, prolonged viewing of tilted lines (context) causes subsequently presented, straight lines (test) to be perceived as tilted in the opposite direction (perceive), a contrastive TCE. (B) When two ambiguous Necker cubes are presented in temporal succession, the perceived orientation of the first Necker cube (context) often determines the perceived orientation of the second Necker cube (test), although all interpretations are equally likely when the same Necker cube is presented in isolation. For example, if the first cube is perceived as facing up (down), this will provide the context for the second cube, which will be perceived as facing up (down), too. This stabilization of perception is an attractive TCE. (C) In the auditory stream segregation paradigm, the test tones have a constant ambiguous Δf throughout the duration of the experiment. When the Δf of the context is larger than the test, this typically leads to a contrastive effect, whereby listeners perceive the context as two separate streams and the test as one stream. (D) When the Δf of the context is the same ambiguous Δf as the test, this typically leads to listeners reporting that they hear the same percept as they had for the context (e.g., if they heard two streams for the context, they are more likely to hear two streams for the test).
Mentions: Two TCEs have been investigated most extensively: the first typically occurs when a non-ambiguous, salient context stimulus (e.g., leftward tilted lines) precedes a test stimulus (e.g., vertically oriented lines), which results in perception being repelled away from the interpretation of the context stimulus such that participants perceive the test stimulus lines as tilted rightward (Figure 1A). Similarly, in the waterfall illusion, also known as the motion aftereffect, a rock on the side of the stream is usually perceived as moving upward after staring at the downward motion of the waterfall (Addams, 1834). This contrastive effect is known as adaptation, negative aftereffect, or habituation. There is considerable evidence that it results from neural adaptation, which in turn alters the balance of population activity, thus favoring perception of features that are not adapted (Grunewald and Lankheet, 1996; Huk et al., 2001).

View Article: PubMed Central

ABSTRACT

What has transpired immediately before has a strong influence on how sensory stimuli are processed and perceived. In particular, temporal context can have contrastive effects, repelling perception away from the interpretation of the context stimulus, and attractive effects (TCEs), whereby perception repeats upon successive presentations of the same stimulus. For decades, scientists have documented contrastive and attractive temporal context effects mostly with simple visual stimuli. But both types of effects also occur in other modalities, e.g., audition and touch, and for stimuli of varying complexity, raising the possibility that context effects reflect general computational principles of sensory systems. Neuroimaging shows that contrastive and attractive context effects arise from neural processes in different areas of the cerebral cortex, suggesting two separate operations with distinct functional roles. Bayesian models can provide a functional account of both context effects, whereby prior experience adjusts sensory systems to optimize perception of future stimuli.

No MeSH data available.


Related in: MedlinePlus