Limits...
Opsoclonus-myoclonus syndrome after adenovirus infection.

Syrbe S, Merkenschlager A, Bernhard MK, Grosche J, Liebert UG, Hirsch W, Härtig W - Springerplus (2015)

Bottom Line: Moderately intense long-term immunosuppressive therapy resulted in a favorable clinical outcome.A video demonstrated severe OMS manifestations at onset, followed by nearly complete recovery after treatment.We describe the association of a parainfectious OMS and adenovirus infection; laboratory results indicate a non-specific humoral process affecting mainly cerebellar neurons.

View Article: PubMed Central - PubMed

Affiliation: Department of Women and Child Health, Hospital for Children and Adolescents, University Hospitals, University of Leipzig, Liebigstr 20a, 04103 Leipzig, Germany.

ABSTRACT
Autoimmune and paraneoplastic movement disorders are rare in childhood. Diagnosis often relies on clinical manifestations and clinicians' recognition. A 22-month-old girl at onset of opsoclonus-myoclonus syndrome (OMS) was followed for 8 years. Adenovirus (type C subtype 3) infection coincided with manifestation. Data on treatment, imaging and follow-up are provided. In the spinal fluid, elevated anti-rubella antibodies and oligoclonal bands were detected. An autoimmune process affecting mainly cerebellar neurons was revealed immunohistochemically. Moderately intense long-term immunosuppressive therapy resulted in a favorable clinical outcome. A video demonstrated severe OMS manifestations at onset, followed by nearly complete recovery after treatment. We describe the association of a parainfectious OMS and adenovirus infection; laboratory results indicate a non-specific humoral process affecting mainly cerebellar neurons. Our video documentation will aid to recognize this rare movement disorder and to initiate early treatment.

No MeSH data available.


Related in: MedlinePlus

Double immunofluorescence labeling of cerebellar frozen sections from a human autoptic case. Binding sites for autoantibodies from the patient (green) and astroglial or neuronal markers (red) are concomitantly revealed by confocal laser-scanning microscopy. Autoantigens are stained by patient’s serum (1:20) and carbocyanine (Cy) 2-conjugated anti-human IgG + IgM, while astroglia and neurons are visualized by appropriate Cy3-coupled secondary antibodies. a At lower magnification, the cerebellar subcortex displays layers of granular cells immunoreactive for the patient’s serum—clearly distinguishable from immunoreactivity for rabbit-anti-glial fibrillary acidic protein (GFAP; Dakocytomation; 1:1000). b At higher magnification, autoantibodies bind cells of deep cerebellar nuclei lacking GFAP immunolabeling. c In the cerebellar cortex, Purkinje cells are stained by patient’s serum while rabbit-anti-S100β (Swant; 1:500) predominantly demonstrates protoplasmic astroglia. d Immunodecoration of probably neuronal surface antigens with patient’s serum is located apart from labeling achieved with mouse-anti-neuronal nuclei (NeuN; Millipore; 1:100) in the layer of deep cerebellar neurons. Scale bars in a, c = 200 µm, in b, d = 50 µm
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4628014&req=5

Fig1: Double immunofluorescence labeling of cerebellar frozen sections from a human autoptic case. Binding sites for autoantibodies from the patient (green) and astroglial or neuronal markers (red) are concomitantly revealed by confocal laser-scanning microscopy. Autoantigens are stained by patient’s serum (1:20) and carbocyanine (Cy) 2-conjugated anti-human IgG + IgM, while astroglia and neurons are visualized by appropriate Cy3-coupled secondary antibodies. a At lower magnification, the cerebellar subcortex displays layers of granular cells immunoreactive for the patient’s serum—clearly distinguishable from immunoreactivity for rabbit-anti-glial fibrillary acidic protein (GFAP; Dakocytomation; 1:1000). b At higher magnification, autoantibodies bind cells of deep cerebellar nuclei lacking GFAP immunolabeling. c In the cerebellar cortex, Purkinje cells are stained by patient’s serum while rabbit-anti-S100β (Swant; 1:500) predominantly demonstrates protoplasmic astroglia. d Immunodecoration of probably neuronal surface antigens with patient’s serum is located apart from labeling achieved with mouse-anti-neuronal nuclei (NeuN; Millipore; 1:100) in the layer of deep cerebellar neurons. Scale bars in a, c = 200 µm, in b, d = 50 µm

Mentions: Serum from the patient was applied to indirect immunofluorescence labeling and stained cerebellar neurons (Fig. 1). In parallel, attempts based on onconeural autoantibodies, recognizing the markers Hu, Yo or Ri, and antibodies directed against gangliosides produced no immunolabeling of the same tissue.Fig. 1


Opsoclonus-myoclonus syndrome after adenovirus infection.

Syrbe S, Merkenschlager A, Bernhard MK, Grosche J, Liebert UG, Hirsch W, Härtig W - Springerplus (2015)

Double immunofluorescence labeling of cerebellar frozen sections from a human autoptic case. Binding sites for autoantibodies from the patient (green) and astroglial or neuronal markers (red) are concomitantly revealed by confocal laser-scanning microscopy. Autoantigens are stained by patient’s serum (1:20) and carbocyanine (Cy) 2-conjugated anti-human IgG + IgM, while astroglia and neurons are visualized by appropriate Cy3-coupled secondary antibodies. a At lower magnification, the cerebellar subcortex displays layers of granular cells immunoreactive for the patient’s serum—clearly distinguishable from immunoreactivity for rabbit-anti-glial fibrillary acidic protein (GFAP; Dakocytomation; 1:1000). b At higher magnification, autoantibodies bind cells of deep cerebellar nuclei lacking GFAP immunolabeling. c In the cerebellar cortex, Purkinje cells are stained by patient’s serum while rabbit-anti-S100β (Swant; 1:500) predominantly demonstrates protoplasmic astroglia. d Immunodecoration of probably neuronal surface antigens with patient’s serum is located apart from labeling achieved with mouse-anti-neuronal nuclei (NeuN; Millipore; 1:100) in the layer of deep cerebellar neurons. Scale bars in a, c = 200 µm, in b, d = 50 µm
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4628014&req=5

Fig1: Double immunofluorescence labeling of cerebellar frozen sections from a human autoptic case. Binding sites for autoantibodies from the patient (green) and astroglial or neuronal markers (red) are concomitantly revealed by confocal laser-scanning microscopy. Autoantigens are stained by patient’s serum (1:20) and carbocyanine (Cy) 2-conjugated anti-human IgG + IgM, while astroglia and neurons are visualized by appropriate Cy3-coupled secondary antibodies. a At lower magnification, the cerebellar subcortex displays layers of granular cells immunoreactive for the patient’s serum—clearly distinguishable from immunoreactivity for rabbit-anti-glial fibrillary acidic protein (GFAP; Dakocytomation; 1:1000). b At higher magnification, autoantibodies bind cells of deep cerebellar nuclei lacking GFAP immunolabeling. c In the cerebellar cortex, Purkinje cells are stained by patient’s serum while rabbit-anti-S100β (Swant; 1:500) predominantly demonstrates protoplasmic astroglia. d Immunodecoration of probably neuronal surface antigens with patient’s serum is located apart from labeling achieved with mouse-anti-neuronal nuclei (NeuN; Millipore; 1:100) in the layer of deep cerebellar neurons. Scale bars in a, c = 200 µm, in b, d = 50 µm
Mentions: Serum from the patient was applied to indirect immunofluorescence labeling and stained cerebellar neurons (Fig. 1). In parallel, attempts based on onconeural autoantibodies, recognizing the markers Hu, Yo or Ri, and antibodies directed against gangliosides produced no immunolabeling of the same tissue.Fig. 1

Bottom Line: Moderately intense long-term immunosuppressive therapy resulted in a favorable clinical outcome.A video demonstrated severe OMS manifestations at onset, followed by nearly complete recovery after treatment.We describe the association of a parainfectious OMS and adenovirus infection; laboratory results indicate a non-specific humoral process affecting mainly cerebellar neurons.

View Article: PubMed Central - PubMed

Affiliation: Department of Women and Child Health, Hospital for Children and Adolescents, University Hospitals, University of Leipzig, Liebigstr 20a, 04103 Leipzig, Germany.

ABSTRACT
Autoimmune and paraneoplastic movement disorders are rare in childhood. Diagnosis often relies on clinical manifestations and clinicians' recognition. A 22-month-old girl at onset of opsoclonus-myoclonus syndrome (OMS) was followed for 8 years. Adenovirus (type C subtype 3) infection coincided with manifestation. Data on treatment, imaging and follow-up are provided. In the spinal fluid, elevated anti-rubella antibodies and oligoclonal bands were detected. An autoimmune process affecting mainly cerebellar neurons was revealed immunohistochemically. Moderately intense long-term immunosuppressive therapy resulted in a favorable clinical outcome. A video demonstrated severe OMS manifestations at onset, followed by nearly complete recovery after treatment. We describe the association of a parainfectious OMS and adenovirus infection; laboratory results indicate a non-specific humoral process affecting mainly cerebellar neurons. Our video documentation will aid to recognize this rare movement disorder and to initiate early treatment.

No MeSH data available.


Related in: MedlinePlus