Limits...
Is agritourism eco-friendly? A comparison between agritourisms and other farms in Italy using farm accountancy data network dataset.

Mastronardi L, Giaccio V, Giannelli A, Scardera A - Springerplus (2015)

Bottom Line: This paper presents the results of research regarding the environmental performances of Italian farms with agritourism compared with farms without agritourism.The empirical analysis is based on the Italian FADN (Farm Accountancy Data Network) dataset.The European FADN was created to represent farms' technical and economic operation in the European Union and on which it drafts the agricultural and rural policies.

View Article: PubMed Central - PubMed

Affiliation: Department of Economics, Management, Society and Institutions, University of Molise, Campobasso, Italy.

ABSTRACT
This paper presents the results of research regarding the environmental performances of Italian farms with agritourism compared with farms without agritourism. In Italy, agritourism is considered an agricultural activity and can only be performed by a farmer. Moreover, Italian national legislation forces the farmer to dedicate himself mainly to traditional farming, rather than to tourism activities. For this reason, environmental performances have been highlighted by analyzing only features and production systems of the farms. By utilizing the most frequent indicators used in studies regarding sustainability, the authors show how Italian agritourisms tend to develop more environmentally friendly agricultural methods, which have a positive impact on biodiversity, landscape and natural resources. The empirical analysis is based on the Italian FADN (Farm Accountancy Data Network) dataset. The European FADN was created to represent farms' technical and economic operation in the European Union and on which it drafts the agricultural and rural policies. The dichotomous structure of the dependent variable (presence or absence of agritourism at the farm) has a propensity for an assessment method based on Binary Response Model Regression.

No MeSH data available.


Related in: MedlinePlus

The methodology can be outlined through a flow-chart which describes the main logical steps followed in the discussion. At the beginning (a) our sample was divided in two subsamples, one formed by the farms with agritourism and the other by the farms without agritourism. On the second hand, the data analysis was performed both on national sample and on sample sections according to the altitude of the farms. The first sample matches the ones (Y = 1) in our dependent variable and the other matches the zeros (Y = 0). The dichotomous structure of the dependent variable requires a binomial logit model (b) to be associated to the matrix of explicative or independent variables. This matrix was built by selecting a set of environmental indicators as reported in detail in Additional file 1: Table S1. At last (c) the tests applied to assess the fitness of the model may give good or bad results, according to the more or less explicative power of the variables included in the matrix, therefore some of them may be excluded or not from the model
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4627998&req=5

Fig1: The methodology can be outlined through a flow-chart which describes the main logical steps followed in the discussion. At the beginning (a) our sample was divided in two subsamples, one formed by the farms with agritourism and the other by the farms without agritourism. On the second hand, the data analysis was performed both on national sample and on sample sections according to the altitude of the farms. The first sample matches the ones (Y = 1) in our dependent variable and the other matches the zeros (Y = 0). The dichotomous structure of the dependent variable requires a binomial logit model (b) to be associated to the matrix of explicative or independent variables. This matrix was built by selecting a set of environmental indicators as reported in detail in Additional file 1: Table S1. At last (c) the tests applied to assess the fitness of the model may give good or bad results, according to the more or less explicative power of the variables included in the matrix, therefore some of them may be excluded or not from the model

Mentions: The overall methodology is graphically explained in Fig. 1, which illustrates a flow-chart diagram of the key steps carried out in the model building. The reference sample for data analysis is the FADN sample as described in phar. 2.1.Fig. 1


Is agritourism eco-friendly? A comparison between agritourisms and other farms in Italy using farm accountancy data network dataset.

Mastronardi L, Giaccio V, Giannelli A, Scardera A - Springerplus (2015)

The methodology can be outlined through a flow-chart which describes the main logical steps followed in the discussion. At the beginning (a) our sample was divided in two subsamples, one formed by the farms with agritourism and the other by the farms without agritourism. On the second hand, the data analysis was performed both on national sample and on sample sections according to the altitude of the farms. The first sample matches the ones (Y = 1) in our dependent variable and the other matches the zeros (Y = 0). The dichotomous structure of the dependent variable requires a binomial logit model (b) to be associated to the matrix of explicative or independent variables. This matrix was built by selecting a set of environmental indicators as reported in detail in Additional file 1: Table S1. At last (c) the tests applied to assess the fitness of the model may give good or bad results, according to the more or less explicative power of the variables included in the matrix, therefore some of them may be excluded or not from the model
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4627998&req=5

Fig1: The methodology can be outlined through a flow-chart which describes the main logical steps followed in the discussion. At the beginning (a) our sample was divided in two subsamples, one formed by the farms with agritourism and the other by the farms without agritourism. On the second hand, the data analysis was performed both on national sample and on sample sections according to the altitude of the farms. The first sample matches the ones (Y = 1) in our dependent variable and the other matches the zeros (Y = 0). The dichotomous structure of the dependent variable requires a binomial logit model (b) to be associated to the matrix of explicative or independent variables. This matrix was built by selecting a set of environmental indicators as reported in detail in Additional file 1: Table S1. At last (c) the tests applied to assess the fitness of the model may give good or bad results, according to the more or less explicative power of the variables included in the matrix, therefore some of them may be excluded or not from the model
Mentions: The overall methodology is graphically explained in Fig. 1, which illustrates a flow-chart diagram of the key steps carried out in the model building. The reference sample for data analysis is the FADN sample as described in phar. 2.1.Fig. 1

Bottom Line: This paper presents the results of research regarding the environmental performances of Italian farms with agritourism compared with farms without agritourism.The empirical analysis is based on the Italian FADN (Farm Accountancy Data Network) dataset.The European FADN was created to represent farms' technical and economic operation in the European Union and on which it drafts the agricultural and rural policies.

View Article: PubMed Central - PubMed

Affiliation: Department of Economics, Management, Society and Institutions, University of Molise, Campobasso, Italy.

ABSTRACT
This paper presents the results of research regarding the environmental performances of Italian farms with agritourism compared with farms without agritourism. In Italy, agritourism is considered an agricultural activity and can only be performed by a farmer. Moreover, Italian national legislation forces the farmer to dedicate himself mainly to traditional farming, rather than to tourism activities. For this reason, environmental performances have been highlighted by analyzing only features and production systems of the farms. By utilizing the most frequent indicators used in studies regarding sustainability, the authors show how Italian agritourisms tend to develop more environmentally friendly agricultural methods, which have a positive impact on biodiversity, landscape and natural resources. The empirical analysis is based on the Italian FADN (Farm Accountancy Data Network) dataset. The European FADN was created to represent farms' technical and economic operation in the European Union and on which it drafts the agricultural and rural policies. The dichotomous structure of the dependent variable (presence or absence of agritourism at the farm) has a propensity for an assessment method based on Binary Response Model Regression.

No MeSH data available.


Related in: MedlinePlus