Limits...
Photoelectrochemical properties of mesoporous NiO x deposited on technical FTO via nanopowder sintering in conventional and plasma atmospheres.

Awais M, Dowling DD, Decker F, Dini D - Springerplus (2015)

Bottom Line: Photoelectrochemical effects of sensitized RDS NiO x were evidenced upon oxide reduction.With the addition of iodine RDS NiOx electrodes could give the reduction iodine → iodide in addition to the reduction of RDS NiO x . p-type dye sensitized solar cells were assembled with RDS NiO x photocathodes sensitized either by ERY or Fast Green.Resulting overall efficiencies ranged between 0.02 and 0.04 % upon irradiation with solar spectrum simulator (I in: 0.1 W cm(-2)).

View Article: PubMed Central - PubMed

Affiliation: Department of Industrial Engineering, "King Abdulaziz" University, Rabigh, KSA.

ABSTRACT
Nanoporous nickel oxide (NiO x ) has been deposited with two different procedures of sintering (CS and RDS). Both samples display solid state oxidation at about 3.1 V vs Li+/Li. Upon sensitization of CS/RDS NiO x with erythrosine b (ERY), nickel oxide oxidation occurs at the same potential. Impedance spectroscopy revealed a higher charge transfer resistance for ERY-sensitized RDS NiO x with respect to sensitized CS NiO x . This was due to the chemisorption of a larger amount of ERY on RDS with respect to CS NiO x . Upon illumination the photoinduced charge transfer between ERY layer and NiO x could be observed only with oxidized CS. Photoelectrochemical effects of sensitized RDS NiO x were evidenced upon oxide reduction. With the addition of iodine RDS NiOx electrodes could give the reduction iodine → iodide in addition to the reduction of RDS NiO x . p-type dye sensitized solar cells were assembled with RDS NiO x photocathodes sensitized either by ERY or Fast Green. Resulting overall efficiencies ranged between 0.02 and 0.04 % upon irradiation with solar spectrum simulator (I in: 0.1 W cm(-2)).

No MeSH data available.


Cyclic voltammetry of ERY-sensitised CS-NiOx deposited on FTO substrate (scan rate: 12 mV s−1). OCV: 3.13(dark)/3.17(illuminated) V vs Li+/Li. Radiation source was a halogen white lamp with total intensity of 22 W cm−2. Arrows indicate the verse of scan
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4627985&req=5

Fig9: Cyclic voltammetry of ERY-sensitised CS-NiOx deposited on FTO substrate (scan rate: 12 mV s−1). OCV: 3.13(dark)/3.17(illuminated) V vs Li+/Li. Radiation source was a halogen white lamp with total intensity of 22 W cm−2. Arrows indicate the verse of scan

Mentions: No additional current peaks related to ERY electrochemistry are found within the experimental range of applied potential. Under these circumstances the layer of ERY behaves as a passivating agent towards the process of ionic charge transport through ERY-NiOx/electrolyte interface. Moreover, ERY layer is electrochemically inert due to the absence of any faradic process associated to ERY. White light illumination of the dye-sensitised oxide samples produces several effects: a positive photopotential, an increase of the oxidation current density, and the negative shift of the current baseline when no redox processes occur (Figs. 9, 10). This combination of facts is due to the photogeneration of positive charge carriers (Gerischer and Willig 1976) in dye-sensitised NiOx when visible light is absorbed by the ERY layer (He et al. 1999, 2000; Vera et al. 2005). Cyclic voltammetries of ERY-sensitised RDS and ERY-sensitised CS NiOx have been carried out at different scan rates under white light illumination (Figs. 11, 12).Fig. 9


Photoelectrochemical properties of mesoporous NiO x deposited on technical FTO via nanopowder sintering in conventional and plasma atmospheres.

Awais M, Dowling DD, Decker F, Dini D - Springerplus (2015)

Cyclic voltammetry of ERY-sensitised CS-NiOx deposited on FTO substrate (scan rate: 12 mV s−1). OCV: 3.13(dark)/3.17(illuminated) V vs Li+/Li. Radiation source was a halogen white lamp with total intensity of 22 W cm−2. Arrows indicate the verse of scan
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4627985&req=5

Fig9: Cyclic voltammetry of ERY-sensitised CS-NiOx deposited on FTO substrate (scan rate: 12 mV s−1). OCV: 3.13(dark)/3.17(illuminated) V vs Li+/Li. Radiation source was a halogen white lamp with total intensity of 22 W cm−2. Arrows indicate the verse of scan
Mentions: No additional current peaks related to ERY electrochemistry are found within the experimental range of applied potential. Under these circumstances the layer of ERY behaves as a passivating agent towards the process of ionic charge transport through ERY-NiOx/electrolyte interface. Moreover, ERY layer is electrochemically inert due to the absence of any faradic process associated to ERY. White light illumination of the dye-sensitised oxide samples produces several effects: a positive photopotential, an increase of the oxidation current density, and the negative shift of the current baseline when no redox processes occur (Figs. 9, 10). This combination of facts is due to the photogeneration of positive charge carriers (Gerischer and Willig 1976) in dye-sensitised NiOx when visible light is absorbed by the ERY layer (He et al. 1999, 2000; Vera et al. 2005). Cyclic voltammetries of ERY-sensitised RDS and ERY-sensitised CS NiOx have been carried out at different scan rates under white light illumination (Figs. 11, 12).Fig. 9

Bottom Line: Photoelectrochemical effects of sensitized RDS NiO x were evidenced upon oxide reduction.With the addition of iodine RDS NiOx electrodes could give the reduction iodine → iodide in addition to the reduction of RDS NiO x . p-type dye sensitized solar cells were assembled with RDS NiO x photocathodes sensitized either by ERY or Fast Green.Resulting overall efficiencies ranged between 0.02 and 0.04 % upon irradiation with solar spectrum simulator (I in: 0.1 W cm(-2)).

View Article: PubMed Central - PubMed

Affiliation: Department of Industrial Engineering, "King Abdulaziz" University, Rabigh, KSA.

ABSTRACT
Nanoporous nickel oxide (NiO x ) has been deposited with two different procedures of sintering (CS and RDS). Both samples display solid state oxidation at about 3.1 V vs Li+/Li. Upon sensitization of CS/RDS NiO x with erythrosine b (ERY), nickel oxide oxidation occurs at the same potential. Impedance spectroscopy revealed a higher charge transfer resistance for ERY-sensitized RDS NiO x with respect to sensitized CS NiO x . This was due to the chemisorption of a larger amount of ERY on RDS with respect to CS NiO x . Upon illumination the photoinduced charge transfer between ERY layer and NiO x could be observed only with oxidized CS. Photoelectrochemical effects of sensitized RDS NiO x were evidenced upon oxide reduction. With the addition of iodine RDS NiOx electrodes could give the reduction iodine → iodide in addition to the reduction of RDS NiO x . p-type dye sensitized solar cells were assembled with RDS NiO x photocathodes sensitized either by ERY or Fast Green. Resulting overall efficiencies ranged between 0.02 and 0.04 % upon irradiation with solar spectrum simulator (I in: 0.1 W cm(-2)).

No MeSH data available.