Limits...
A comparison of commercial and custom-made electronic tracking systems to measure patient flow through an ambulatory clinic.

Vakili S, Pandit R, Singman EL, Appelbaum J, Boland MV - Int J Health Geogr (2015)

Bottom Line: The proportion of events successfully recorded by the RFID system (83.7%) was significantly greater than that obtained with the IR system (75.4%, p < 0.001).Excluding those data, the IR system successfully recorded 94.4% of events (p = 0.002; OR = 3.83 compared to the RFID system).Both RFID and IR methods are effective at providing patient flow information.

View Article: PubMed Central - PubMed

Affiliation: Johns Hopkins University School of Medicine, Baltimore, MD, USA. sharif.vakili@jhmi.edu.

ABSTRACT

Background: Understanding how patients move through outpatient clinics is important for optimizing clinic processes. This study compares the costs, benefits, and challenges of two clinically important methods for measuring patient flow: (1) a commercial system using infrared (IR) technology that passively tracks patient movements and (2) a custom-built, low cost, networked radio frequency identification (RFID) system that requires active swiping by patients at proximity card readers.

Methods: Readers for both the IR and RFID systems were installed in the General Eye Service of the Wilmer Eye Institute. Participants were given both IR and RFID tags to measure the time they spent in various clinic stations. Simultaneously, investigators recorded the times at which patients moved between rooms. These measurements were considered the standard against which the other methods were compared.

Results: One hundred twelve patients generated a total of 252 events over the course of 6 days. The proportion of events successfully recorded by the RFID system (83.7%) was significantly greater than that obtained with the IR system (75.4%, p < 0.001). The cause of the missing events using the IR method was found to be a signal interruption between the patient tags and the check-in desk receiver. Excluding those data, the IR system successfully recorded 94.4% of events (p = 0.002; OR = 3.83 compared to the RFID system). There was no statistical difference between the IR, RFID, and manual time measurements (p > 0.05 for all comparisons).

Conclusions: Both RFID and IR methods are effective at providing patient flow information. The custom-made RFID system was as accurate as IR and was installed at about 10% the cost. Given its significantly lower costs, the RFID option may be an appealing option for smaller clinics with more limited budgets.

No MeSH data available.


Related in: MedlinePlus

Infrared (IR) tracking system overview: (1) the patient is given a battery-powered IR tag. (2) The tag is activated by an infrared signal from exam room or open area receivers. (3) The tag emits a 900 MHz radiofrequency signal with tag number to access points. (4) Access points send the IR tag number and receiver location data to a computer via Wi-Fi routers. (5) A computer runs data collection software
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4625437&req=5

Fig1: Infrared (IR) tracking system overview: (1) the patient is given a battery-powered IR tag. (2) The tag is activated by an infrared signal from exam room or open area receivers. (3) The tag emits a 900 MHz radiofrequency signal with tag number to access points. (4) Access points send the IR tag number and receiver location data to a computer via Wi-Fi routers. (5) A computer runs data collection software

Mentions: The IR technology used was produced by CenTrak (CenTrak, Newtown, PA, USA). Receivers were installed in the ceilings of examination rooms, waiting rooms and the front desk, and access points installed in the ceilings accompanied a set of about 5 receivers (Fig. 1). Unique battery-powered tags received IR signals from transmitters and then transmitted 900 mHz radiofrequency (RF) signals to access points, which registered the tags’ locations with millisecond precision. The access points then transferred tag location information to a computer through a Wi-Fi network deployed solely for the IR system. The computer ran proprietary data collections software from CenTrak.Fig. 1


A comparison of commercial and custom-made electronic tracking systems to measure patient flow through an ambulatory clinic.

Vakili S, Pandit R, Singman EL, Appelbaum J, Boland MV - Int J Health Geogr (2015)

Infrared (IR) tracking system overview: (1) the patient is given a battery-powered IR tag. (2) The tag is activated by an infrared signal from exam room or open area receivers. (3) The tag emits a 900 MHz radiofrequency signal with tag number to access points. (4) Access points send the IR tag number and receiver location data to a computer via Wi-Fi routers. (5) A computer runs data collection software
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4625437&req=5

Fig1: Infrared (IR) tracking system overview: (1) the patient is given a battery-powered IR tag. (2) The tag is activated by an infrared signal from exam room or open area receivers. (3) The tag emits a 900 MHz radiofrequency signal with tag number to access points. (4) Access points send the IR tag number and receiver location data to a computer via Wi-Fi routers. (5) A computer runs data collection software
Mentions: The IR technology used was produced by CenTrak (CenTrak, Newtown, PA, USA). Receivers were installed in the ceilings of examination rooms, waiting rooms and the front desk, and access points installed in the ceilings accompanied a set of about 5 receivers (Fig. 1). Unique battery-powered tags received IR signals from transmitters and then transmitted 900 mHz radiofrequency (RF) signals to access points, which registered the tags’ locations with millisecond precision. The access points then transferred tag location information to a computer through a Wi-Fi network deployed solely for the IR system. The computer ran proprietary data collections software from CenTrak.Fig. 1

Bottom Line: The proportion of events successfully recorded by the RFID system (83.7%) was significantly greater than that obtained with the IR system (75.4%, p < 0.001).Excluding those data, the IR system successfully recorded 94.4% of events (p = 0.002; OR = 3.83 compared to the RFID system).Both RFID and IR methods are effective at providing patient flow information.

View Article: PubMed Central - PubMed

Affiliation: Johns Hopkins University School of Medicine, Baltimore, MD, USA. sharif.vakili@jhmi.edu.

ABSTRACT

Background: Understanding how patients move through outpatient clinics is important for optimizing clinic processes. This study compares the costs, benefits, and challenges of two clinically important methods for measuring patient flow: (1) a commercial system using infrared (IR) technology that passively tracks patient movements and (2) a custom-built, low cost, networked radio frequency identification (RFID) system that requires active swiping by patients at proximity card readers.

Methods: Readers for both the IR and RFID systems were installed in the General Eye Service of the Wilmer Eye Institute. Participants were given both IR and RFID tags to measure the time they spent in various clinic stations. Simultaneously, investigators recorded the times at which patients moved between rooms. These measurements were considered the standard against which the other methods were compared.

Results: One hundred twelve patients generated a total of 252 events over the course of 6 days. The proportion of events successfully recorded by the RFID system (83.7%) was significantly greater than that obtained with the IR system (75.4%, p < 0.001). The cause of the missing events using the IR method was found to be a signal interruption between the patient tags and the check-in desk receiver. Excluding those data, the IR system successfully recorded 94.4% of events (p = 0.002; OR = 3.83 compared to the RFID system). There was no statistical difference between the IR, RFID, and manual time measurements (p > 0.05 for all comparisons).

Conclusions: Both RFID and IR methods are effective at providing patient flow information. The custom-made RFID system was as accurate as IR and was installed at about 10% the cost. Given its significantly lower costs, the RFID option may be an appealing option for smaller clinics with more limited budgets.

No MeSH data available.


Related in: MedlinePlus