Limits...
Biocompatibility and bioactivity of calcium silicate-based endodontic sealers in human dental pulp cells.

Mestieri LB, Gomes-Cornélio AL, Rodrigues EM, Salles LP, Bosso-Martelo R, Guerreiro-Tanomaru JM, Tanomaru-Filho M - J Appl Oral Sci (2015)

Bottom Line: The NR results demonstrated cell viability for all materials tested.MTAF and FC groups demonstrated a decrease in ALP activity when compared to CT at both periods of cell exposure.Conclusions The hDPCs were suitable for the evaluation of new endodontic materialsin vitro.MTAP may be considered a promising material for endodontic treatments.

View Article: PubMed Central - PubMed

Affiliation: Departamento de Odontologia Restauradora, Escola de Odontologia, Universidade Estadual Paulista, Araraquara, SP, Brazil.

ABSTRACT
Mineral Trioxide Aggregate (MTA) is a calcium silicate-based material. New sealers have been developed based on calcium silicate as MTA Fillapex and MTA Plus.Objective The aim of this study was to evaluate biocompatibility and bioactivity of these two calcium silicate-based sealers in culture of human dental pulp cells (hDPCs).Material and Methods The cells were isolated from third molars extracted from a 16-year-old patient. Pulp tissue was sectioned into fragments with approximately 1 mm3 and kept in supplemented medium to obtain hDPCs adherent cultures. Cell characterization assays were performed to prove the osteogenic potential. The evaluated materials were: MTA Plus (MTAP); MTA Fillapex (MTAF) and FillCanal (FC). Biocompatibility was evaluated with MTT and Neutral Red (NR) assays, after hDPCs exposure for 24 h to different dilutions of each sealer extract (1:2, 1:3 and 1:4). Unexposed cells were the positive control (CT). Bioactivity was assessed by alkaline phosphatase (ALP) enzymatic assay in cells exposed for one and three days to sealer extracts (1:4 dilution). All data were analyzed by ANOVA and Tukey post-test (p≤0.05%).Results MTT and NR results showed suitable cell viability rates for MTAP at all dilutions (90-135%). Cells exposed to MTAF and FC (1:2 and 1:4 dilutions) showed significant low viability rate when compared to CT in MTT. The NR results demonstrated cell viability for all materials tested. In MTAP group, the cells ALP activity was similar to CT in one and three days of exposure to the material. MTAF and FC groups demonstrated a decrease in ALP activity when compared to CT at both periods of cell exposure.Conclusions The hDPCs were suitable for the evaluation of new endodontic materialsin vitro. MTAP may be considered a promising material for endodontic treatments.

No MeSH data available.


Related in: MedlinePlus

Cell viability rate (%) according to NR assay in human dental pulp cells (hDPCs) exposed to MTA Plus (MTAP), MTA Fillapex (MTAF), FillCanal (FC) and culture medium used as control (CT). Bars with different letters represent significant differences between groups in each concentration of the material extracts (p<0.05)
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4621938&req=5

f03: Cell viability rate (%) according to NR assay in human dental pulp cells (hDPCs) exposed to MTA Plus (MTAP), MTA Fillapex (MTAF), FillCanal (FC) and culture medium used as control (CT). Bars with different letters represent significant differences between groups in each concentration of the material extracts (p<0.05)

Mentions: The MTT assay (Figure 2) showed 80-120% of viability to hDPCs exposed to MTAP at all concentrations evaluated, being similar to the negative control of cytotoxicity (p>0.05). The MTAP group viability rate was similar in the dilution of 1:4 to the other groups (p>0.05), although MTAF and FC groups viability rate showed significant difference in comparison to the CT. MTAF showed lower viability rate than CT at all concentrations evaluated. At NR assay (Figure 3), hDPCs exposed to MTAP showed significant higher viability rate (130-135%) than CT for all dilutions evaluated (p<0.05). MTAF showed the lowest viability of all groups in 1:2 dilution (p<0.05), however it increased in the dilutions of 1:3 and 1:4 (p<0.05). FC demonstrated good viability in all dilutions, being similar to MTAF in 1:4 (p>0.05).


Biocompatibility and bioactivity of calcium silicate-based endodontic sealers in human dental pulp cells.

Mestieri LB, Gomes-Cornélio AL, Rodrigues EM, Salles LP, Bosso-Martelo R, Guerreiro-Tanomaru JM, Tanomaru-Filho M - J Appl Oral Sci (2015)

Cell viability rate (%) according to NR assay in human dental pulp cells (hDPCs) exposed to MTA Plus (MTAP), MTA Fillapex (MTAF), FillCanal (FC) and culture medium used as control (CT). Bars with different letters represent significant differences between groups in each concentration of the material extracts (p<0.05)
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4621938&req=5

f03: Cell viability rate (%) according to NR assay in human dental pulp cells (hDPCs) exposed to MTA Plus (MTAP), MTA Fillapex (MTAF), FillCanal (FC) and culture medium used as control (CT). Bars with different letters represent significant differences between groups in each concentration of the material extracts (p<0.05)
Mentions: The MTT assay (Figure 2) showed 80-120% of viability to hDPCs exposed to MTAP at all concentrations evaluated, being similar to the negative control of cytotoxicity (p>0.05). The MTAP group viability rate was similar in the dilution of 1:4 to the other groups (p>0.05), although MTAF and FC groups viability rate showed significant difference in comparison to the CT. MTAF showed lower viability rate than CT at all concentrations evaluated. At NR assay (Figure 3), hDPCs exposed to MTAP showed significant higher viability rate (130-135%) than CT for all dilutions evaluated (p<0.05). MTAF showed the lowest viability of all groups in 1:2 dilution (p<0.05), however it increased in the dilutions of 1:3 and 1:4 (p<0.05). FC demonstrated good viability in all dilutions, being similar to MTAF in 1:4 (p>0.05).

Bottom Line: The NR results demonstrated cell viability for all materials tested.MTAF and FC groups demonstrated a decrease in ALP activity when compared to CT at both periods of cell exposure.Conclusions The hDPCs were suitable for the evaluation of new endodontic materialsin vitro.MTAP may be considered a promising material for endodontic treatments.

View Article: PubMed Central - PubMed

Affiliation: Departamento de Odontologia Restauradora, Escola de Odontologia, Universidade Estadual Paulista, Araraquara, SP, Brazil.

ABSTRACT
Mineral Trioxide Aggregate (MTA) is a calcium silicate-based material. New sealers have been developed based on calcium silicate as MTA Fillapex and MTA Plus.Objective The aim of this study was to evaluate biocompatibility and bioactivity of these two calcium silicate-based sealers in culture of human dental pulp cells (hDPCs).Material and Methods The cells were isolated from third molars extracted from a 16-year-old patient. Pulp tissue was sectioned into fragments with approximately 1 mm3 and kept in supplemented medium to obtain hDPCs adherent cultures. Cell characterization assays were performed to prove the osteogenic potential. The evaluated materials were: MTA Plus (MTAP); MTA Fillapex (MTAF) and FillCanal (FC). Biocompatibility was evaluated with MTT and Neutral Red (NR) assays, after hDPCs exposure for 24 h to different dilutions of each sealer extract (1:2, 1:3 and 1:4). Unexposed cells were the positive control (CT). Bioactivity was assessed by alkaline phosphatase (ALP) enzymatic assay in cells exposed for one and three days to sealer extracts (1:4 dilution). All data were analyzed by ANOVA and Tukey post-test (p≤0.05%).Results MTT and NR results showed suitable cell viability rates for MTAP at all dilutions (90-135%). Cells exposed to MTAF and FC (1:2 and 1:4 dilutions) showed significant low viability rate when compared to CT in MTT. The NR results demonstrated cell viability for all materials tested. In MTAP group, the cells ALP activity was similar to CT in one and three days of exposure to the material. MTAF and FC groups demonstrated a decrease in ALP activity when compared to CT at both periods of cell exposure.Conclusions The hDPCs were suitable for the evaluation of new endodontic materialsin vitro. MTAP may be considered a promising material for endodontic treatments.

No MeSH data available.


Related in: MedlinePlus