Limits...
A prospective pilot study of detection of sentinel lymph nodes in gynaecological cancers using a novel near infrared fluorescence imaging system.

Laios A, Volpi D, Tullis ID, Woodward M, Kennedy S, Pathiraja PN, Haldar K, Vojnovic B, Ahmed AA - BMC Res Notes (2015)

Bottom Line: Sentinel Lymph Node (SLN) sampling may significantly reduce surgical morbidity by avoiding needless radical lymphadenectomy.A novel, custom-made, optical imaging system was developed to enable detection of multiple fluorescence dyes and allow simultaneous bright-field imaging during open surgery and laparoscopic procedures.The main outcomes of the study included SLN mapping detection rates, false negative rates using the NIR fluorescence technique and safety of the procedures.

View Article: PubMed Central - PubMed

Affiliation: Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford, UK. a.laios@nhs.net.

ABSTRACT

Background: Sentinel Lymph Node (SLN) sampling may significantly reduce surgical morbidity by avoiding needless radical lymphadenectomy. In gynaecological cancers, the current practice in the UK is testing the accuracy of SLN detection using radioactive isotopes within the context of clinical trials. However, radioactive tracers pose significant logistic problems. We, therefore, conducted a pilot, observational study to assess the feasibility of a novel optical imaging device for SLN detection in gynaecological cancers using near infrared (NIR) fluorescence.

Methods: A novel, custom-made, optical imaging system was developed to enable detection of multiple fluorescence dyes and allow simultaneous bright-field imaging during open surgery and laparoscopic procedures. We then evaluated the performance of the system in a prospective study of 49 women with early stage vulval, cervical and endometrial cancer who were scheduled to undergo complete lymphadenectomy. Clinically approved fluorescent contrast agents indocyanine green (ICG) and methylene blue (MB) were used. The main outcomes of the study included SLN mapping detection rates, false negative rates using the NIR fluorescence technique and safety of the procedures. We also examined the association between injection sites and differential lymphatic drainage in women with endometrial cancer by fluorescence imaging of ICG and MB.

Results: A total of 64 SLNs were detected during both open surgery and laparoscopy. Following dose optimisation and the learning phase, SLN detection rate approached 100 % for all cancer types with no false negatives detected. Fluorescence from ICG and MB detected para-aortic SLNs in women with endometrial cancer following uterine injection. Percutaneous SLN detection was also achieved in most women with vulval cancer. No adverse reactions associated with the use of either dyes were observed.

Conclusions: This study demonstrated the successful clinical application of a novel NIR fluorescence imaging system for SLN detection across different gynaecological cancers. We showcased the first in human imaging, during the same procedure, of two fluorescence dyes in women with endometrial cancer.

No MeSH data available.


Related in: MedlinePlus

Intra-operative fluorescence imaging. a Laparoscopic fluorescence imaging of ICG in a woman with endometrial cancer showing lymphatic vessels (yellow arrow heads, top) and a SLN (yellow arrow, bottom). b Percutaneous (top) and intra-operative (bottom) imaging of a ~20 mm deep SLN (yellow arrow) in vulval cancer using the wide-field imaging system. c Lymphatic co-localisation (yellow arrow heads) of MB (top) and ICG (bottom) following uterine and cervical injection, respectively, in a woman with endometrial cancer. d Para-aortic SLN (yellow arrow) fluorescence detection in a woman with endometrial cancer following uterine subserosa injection of ICG
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4621870&req=5

Fig4: Intra-operative fluorescence imaging. a Laparoscopic fluorescence imaging of ICG in a woman with endometrial cancer showing lymphatic vessels (yellow arrow heads, top) and a SLN (yellow arrow, bottom). b Percutaneous (top) and intra-operative (bottom) imaging of a ~20 mm deep SLN (yellow arrow) in vulval cancer using the wide-field imaging system. c Lymphatic co-localisation (yellow arrow heads) of MB (top) and ICG (bottom) following uterine and cervical injection, respectively, in a woman with endometrial cancer. d Para-aortic SLN (yellow arrow) fluorescence detection in a woman with endometrial cancer following uterine subserosa injection of ICG

Mentions: Intra-operative hotspot and SLN detection rates are represented by the learning curve shown in Fig. 3. Fluorescence hotspots differed slightly from SLN detection rates at the beginning of the study, indicating that some hotspots contained adipose tissue. Detection rates reached 100 % after ~30 cases, as shown in Table 1, along with total number of SLNs detected. The optimal injected concentration and volume were found to be 1 mg/ml and 4 ml respectively (optimised dose group in Table 1). Considering the optimised dose group only, the average number of SLNs per case was 2 (1–3) for vulval, 4 (4–4) for cervical and 1.5 (1–3) for endometrial cancers. The external iliac group of LNs was the commonest anatomical site for SLN detection for cervical and endometrial cancers. A series of snapshots from fluorescence imaging of lymphatic vessels and a left external iliac SLN in endometrial cancer are shown in Fig. 4a. All intra-operatively identified hotspots were confirmed to be fluorescent by subsequent ex vivo imaging. No residual hotspots were observed at the end of the procedures following systematic inspection of the surgical field. No adverse reactions associated with the use fluorescence dyes were observed.Fig. 3


A prospective pilot study of detection of sentinel lymph nodes in gynaecological cancers using a novel near infrared fluorescence imaging system.

Laios A, Volpi D, Tullis ID, Woodward M, Kennedy S, Pathiraja PN, Haldar K, Vojnovic B, Ahmed AA - BMC Res Notes (2015)

Intra-operative fluorescence imaging. a Laparoscopic fluorescence imaging of ICG in a woman with endometrial cancer showing lymphatic vessels (yellow arrow heads, top) and a SLN (yellow arrow, bottom). b Percutaneous (top) and intra-operative (bottom) imaging of a ~20 mm deep SLN (yellow arrow) in vulval cancer using the wide-field imaging system. c Lymphatic co-localisation (yellow arrow heads) of MB (top) and ICG (bottom) following uterine and cervical injection, respectively, in a woman with endometrial cancer. d Para-aortic SLN (yellow arrow) fluorescence detection in a woman with endometrial cancer following uterine subserosa injection of ICG
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4621870&req=5

Fig4: Intra-operative fluorescence imaging. a Laparoscopic fluorescence imaging of ICG in a woman with endometrial cancer showing lymphatic vessels (yellow arrow heads, top) and a SLN (yellow arrow, bottom). b Percutaneous (top) and intra-operative (bottom) imaging of a ~20 mm deep SLN (yellow arrow) in vulval cancer using the wide-field imaging system. c Lymphatic co-localisation (yellow arrow heads) of MB (top) and ICG (bottom) following uterine and cervical injection, respectively, in a woman with endometrial cancer. d Para-aortic SLN (yellow arrow) fluorescence detection in a woman with endometrial cancer following uterine subserosa injection of ICG
Mentions: Intra-operative hotspot and SLN detection rates are represented by the learning curve shown in Fig. 3. Fluorescence hotspots differed slightly from SLN detection rates at the beginning of the study, indicating that some hotspots contained adipose tissue. Detection rates reached 100 % after ~30 cases, as shown in Table 1, along with total number of SLNs detected. The optimal injected concentration and volume were found to be 1 mg/ml and 4 ml respectively (optimised dose group in Table 1). Considering the optimised dose group only, the average number of SLNs per case was 2 (1–3) for vulval, 4 (4–4) for cervical and 1.5 (1–3) for endometrial cancers. The external iliac group of LNs was the commonest anatomical site for SLN detection for cervical and endometrial cancers. A series of snapshots from fluorescence imaging of lymphatic vessels and a left external iliac SLN in endometrial cancer are shown in Fig. 4a. All intra-operatively identified hotspots were confirmed to be fluorescent by subsequent ex vivo imaging. No residual hotspots were observed at the end of the procedures following systematic inspection of the surgical field. No adverse reactions associated with the use fluorescence dyes were observed.Fig. 3

Bottom Line: Sentinel Lymph Node (SLN) sampling may significantly reduce surgical morbidity by avoiding needless radical lymphadenectomy.A novel, custom-made, optical imaging system was developed to enable detection of multiple fluorescence dyes and allow simultaneous bright-field imaging during open surgery and laparoscopic procedures.The main outcomes of the study included SLN mapping detection rates, false negative rates using the NIR fluorescence technique and safety of the procedures.

View Article: PubMed Central - PubMed

Affiliation: Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford, UK. a.laios@nhs.net.

ABSTRACT

Background: Sentinel Lymph Node (SLN) sampling may significantly reduce surgical morbidity by avoiding needless radical lymphadenectomy. In gynaecological cancers, the current practice in the UK is testing the accuracy of SLN detection using radioactive isotopes within the context of clinical trials. However, radioactive tracers pose significant logistic problems. We, therefore, conducted a pilot, observational study to assess the feasibility of a novel optical imaging device for SLN detection in gynaecological cancers using near infrared (NIR) fluorescence.

Methods: A novel, custom-made, optical imaging system was developed to enable detection of multiple fluorescence dyes and allow simultaneous bright-field imaging during open surgery and laparoscopic procedures. We then evaluated the performance of the system in a prospective study of 49 women with early stage vulval, cervical and endometrial cancer who were scheduled to undergo complete lymphadenectomy. Clinically approved fluorescent contrast agents indocyanine green (ICG) and methylene blue (MB) were used. The main outcomes of the study included SLN mapping detection rates, false negative rates using the NIR fluorescence technique and safety of the procedures. We also examined the association between injection sites and differential lymphatic drainage in women with endometrial cancer by fluorescence imaging of ICG and MB.

Results: A total of 64 SLNs were detected during both open surgery and laparoscopy. Following dose optimisation and the learning phase, SLN detection rate approached 100 % for all cancer types with no false negatives detected. Fluorescence from ICG and MB detected para-aortic SLNs in women with endometrial cancer following uterine injection. Percutaneous SLN detection was also achieved in most women with vulval cancer. No adverse reactions associated with the use of either dyes were observed.

Conclusions: This study demonstrated the successful clinical application of a novel NIR fluorescence imaging system for SLN detection across different gynaecological cancers. We showcased the first in human imaging, during the same procedure, of two fluorescence dyes in women with endometrial cancer.

No MeSH data available.


Related in: MedlinePlus