Limits...
The controversial nature of the Weissella genus: technological and functional aspects versus whole genome analysis-based pathogenic potential for their application in food and health.

Abriouel H, Lerma LL, Casado Muñoz Mdel C, Montoro BP, Kabisch J, Pichner R, Cho GS, Neve H, Fusco V, Franz CM, Gálvez A, Benomar N - Front Microbiol (2015)

Bottom Line: Despite the use of several Weissella (W.) strains for biotechnological and probiotic purposes, certain species of this genus were found to act as opportunistic pathogens, while strains of W. ceti were recognized to be pathogenic for farmed rainbow trout.Moreover, we detected several antibiotic resistance-encoding genes, whose presence could increase the potential pathogenicity of some strains, but should not be regarded as an excluding trait for beneficial weissellas, as long as these genes are not present on mobile genetic elements.In this sense, the application of W. confusa and W. cibaria strains as starter cultures or as probiotics should be approached with caution, by carefully selecting strains that lack pathogenic potential.

View Article: PubMed Central - PubMed

Affiliation: Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén , Jaén, Spain.

ABSTRACT
Despite the use of several Weissella (W.) strains for biotechnological and probiotic purposes, certain species of this genus were found to act as opportunistic pathogens, while strains of W. ceti were recognized to be pathogenic for farmed rainbow trout. Herein, we investigated the pathogenic potential of weissellas based on in silico analyses of the 13 whole genome sequences available to date in the NCBI database. Our screening allowed us to find several virulence determinants such as collagen adhesins, aggregation substances, mucus-binding proteins, and hemolysins in some species. Moreover, we detected several antibiotic resistance-encoding genes, whose presence could increase the potential pathogenicity of some strains, but should not be regarded as an excluding trait for beneficial weissellas, as long as these genes are not present on mobile genetic elements. Thus, selection of weissellas intended to be used as starters or for biotechnological or probiotic purposes should be investigated regarding their safety aspects on a strain to strain basis, preferably also by genome sequencing, since nucleotide sequence heterogeneity in virulence and antibiotic resistance genes makes PCR-based screening unreliable for safety assessments. In this sense, the application of W. confusa and W. cibaria strains as starter cultures or as probiotics should be approached with caution, by carefully selecting strains that lack pathogenic potential.

No MeSH data available.


Related in: MedlinePlus

Phylogenetic relationships of Weissella species and Leuconostoc Lactobacillus Enterococcus inferred from the alignment of mucus-binding protein encoding genes. The sequences were aligned and the most parsimonious phylogenetic trees were constructed using the CLUSTAL W of Lasergene program, version 5.05 (MegAlign, Inc., Madison, WI, USA). The scale below indicates the number of nucleotide substitutions. Accession numbers are indicated in parentheses.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4621295&req=5

Figure 3: Phylogenetic relationships of Weissella species and Leuconostoc Lactobacillus Enterococcus inferred from the alignment of mucus-binding protein encoding genes. The sequences were aligned and the most parsimonious phylogenetic trees were constructed using the CLUSTAL W of Lasergene program, version 5.05 (MegAlign, Inc., Madison, WI, USA). The scale below indicates the number of nucleotide substitutions. Accession numbers are indicated in parentheses.

Mentions: Genes for mucus-binding protein (Mub), which can serve as effector molecules involved in mechanisms of adherence of bacteria to the host, were detected in W. ceti NC36 and W. confusa LBAE C39-2 (Table 2) genome sequences. The phylogenetic tree of nucleotide sequences encoding mucus-binding proteins of weissellas, as well as of the closely related genera Leuconostoc, Lactobacillus, and Enterococcus, showed that the W. ceti NC36 mub gene clustered closely with Enterococcus sp. C1 mub in the same group together with sequences from Lb. delbrueckii and Leuconostoc. However, the mub of W. confusa LBAE C39-2 clustered with that of Lb. plantarum (Figure 3). The presence of mucus-binding protein may be a desirable feature in probiotic bacteria, as it may play an important role in the adhesion of the probiotic strain to host surfaces (Mack et al., 1999). However, this property is obviously problematic in potentially pathogenic strains.


The controversial nature of the Weissella genus: technological and functional aspects versus whole genome analysis-based pathogenic potential for their application in food and health.

Abriouel H, Lerma LL, Casado Muñoz Mdel C, Montoro BP, Kabisch J, Pichner R, Cho GS, Neve H, Fusco V, Franz CM, Gálvez A, Benomar N - Front Microbiol (2015)

Phylogenetic relationships of Weissella species and Leuconostoc Lactobacillus Enterococcus inferred from the alignment of mucus-binding protein encoding genes. The sequences were aligned and the most parsimonious phylogenetic trees were constructed using the CLUSTAL W of Lasergene program, version 5.05 (MegAlign, Inc., Madison, WI, USA). The scale below indicates the number of nucleotide substitutions. Accession numbers are indicated in parentheses.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4621295&req=5

Figure 3: Phylogenetic relationships of Weissella species and Leuconostoc Lactobacillus Enterococcus inferred from the alignment of mucus-binding protein encoding genes. The sequences were aligned and the most parsimonious phylogenetic trees were constructed using the CLUSTAL W of Lasergene program, version 5.05 (MegAlign, Inc., Madison, WI, USA). The scale below indicates the number of nucleotide substitutions. Accession numbers are indicated in parentheses.
Mentions: Genes for mucus-binding protein (Mub), which can serve as effector molecules involved in mechanisms of adherence of bacteria to the host, were detected in W. ceti NC36 and W. confusa LBAE C39-2 (Table 2) genome sequences. The phylogenetic tree of nucleotide sequences encoding mucus-binding proteins of weissellas, as well as of the closely related genera Leuconostoc, Lactobacillus, and Enterococcus, showed that the W. ceti NC36 mub gene clustered closely with Enterococcus sp. C1 mub in the same group together with sequences from Lb. delbrueckii and Leuconostoc. However, the mub of W. confusa LBAE C39-2 clustered with that of Lb. plantarum (Figure 3). The presence of mucus-binding protein may be a desirable feature in probiotic bacteria, as it may play an important role in the adhesion of the probiotic strain to host surfaces (Mack et al., 1999). However, this property is obviously problematic in potentially pathogenic strains.

Bottom Line: Despite the use of several Weissella (W.) strains for biotechnological and probiotic purposes, certain species of this genus were found to act as opportunistic pathogens, while strains of W. ceti were recognized to be pathogenic for farmed rainbow trout.Moreover, we detected several antibiotic resistance-encoding genes, whose presence could increase the potential pathogenicity of some strains, but should not be regarded as an excluding trait for beneficial weissellas, as long as these genes are not present on mobile genetic elements.In this sense, the application of W. confusa and W. cibaria strains as starter cultures or as probiotics should be approached with caution, by carefully selecting strains that lack pathogenic potential.

View Article: PubMed Central - PubMed

Affiliation: Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén , Jaén, Spain.

ABSTRACT
Despite the use of several Weissella (W.) strains for biotechnological and probiotic purposes, certain species of this genus were found to act as opportunistic pathogens, while strains of W. ceti were recognized to be pathogenic for farmed rainbow trout. Herein, we investigated the pathogenic potential of weissellas based on in silico analyses of the 13 whole genome sequences available to date in the NCBI database. Our screening allowed us to find several virulence determinants such as collagen adhesins, aggregation substances, mucus-binding proteins, and hemolysins in some species. Moreover, we detected several antibiotic resistance-encoding genes, whose presence could increase the potential pathogenicity of some strains, but should not be regarded as an excluding trait for beneficial weissellas, as long as these genes are not present on mobile genetic elements. Thus, selection of weissellas intended to be used as starters or for biotechnological or probiotic purposes should be investigated regarding their safety aspects on a strain to strain basis, preferably also by genome sequencing, since nucleotide sequence heterogeneity in virulence and antibiotic resistance genes makes PCR-based screening unreliable for safety assessments. In this sense, the application of W. confusa and W. cibaria strains as starter cultures or as probiotics should be approached with caution, by carefully selecting strains that lack pathogenic potential.

No MeSH data available.


Related in: MedlinePlus