Limits...
Cardiovascular imaging: what have we learned from animal models?

Santos A, Fernández-Friera L, Villalba M, López-Melgar B, España S, Mateo J, Mota RA, Jiménez-Borreguero J, Ruiz-Cabello J - Front Pharmacol (2015)

Bottom Line: Animal models have allowed for instance, (i) the technical development of different imaging tools, (ii) to test hypothesis generated from human studies and finally, (iii) to evaluate the translational relevance assessment of in vitro and ex-vivo results.We will also describe the physiological findings and/or learning processes for imaging applications coming from models of the most common cardiovascular diseases.Finally we will discuss the limitations and future of imaging research with animal models.

View Article: PubMed Central - PubMed

Affiliation: Centro Nacional de Investigaciones Cardiovasculares Carlos III Madrid, Spain ; CIBER de Enfermedades Respiratorias (CIBERES) Madrid, Spain ; Madrid-MIT M+Visión Consortium Madrid, Spain ; Department of Anesthesia, Massachusetts General Hospital, Harvard Medical School Boston, MA, USA.

ABSTRACT
Cardiovascular imaging has become an indispensable tool for patient diagnosis and follow up. Probably the wide clinical applications of imaging are due to the possibility of a detailed and high quality description and quantification of cardiovascular system structure and function. Also phenomena that involve complex physiological mechanisms and biochemical pathways, such as inflammation and ischemia, can be visualized in a non-destructive way. The widespread use and evolution of imaging would not have been possible without animal studies. Animal models have allowed for instance, (i) the technical development of different imaging tools, (ii) to test hypothesis generated from human studies and finally, (iii) to evaluate the translational relevance assessment of in vitro and ex-vivo results. In this review, we will critically describe the contribution of animal models to the use of biomedical imaging in cardiovascular medicine. We will discuss the characteristics of the most frequent models used in/for imaging studies. We will cover the major findings of animal studies focused in the cardiovascular use of the repeatedly used imaging techniques in clinical practice and experimental studies. We will also describe the physiological findings and/or learning processes for imaging applications coming from models of the most common cardiovascular diseases. In these diseases, imaging research using animals has allowed the study of aspects such as: ventricular size, shape, global function, and wall thickening, local myocardial function, myocardial perfusion, metabolism and energetic assessment, infarct quantification, vascular lesion characterization, myocardial fiber structure, and myocardial calcium uptake. Finally we will discuss the limitations and future of imaging research with animal models.

No MeSH data available.


Related in: MedlinePlus

Cardiac magnetic resonance images of an anterior acute myocardial infarction in a pig model of ischemia/reperfusion injury. (A) Area at risk in T2-STIR sequence and hyperintense zone in anterior septum. (B) Necrotic zone in late enhancement sequence at the same zone. Published with publisher's permission. Original source: Fernández-Friera et al. (2013). Copyright © 2012 Sociedad Española de Cardiología. Publicado por Elsevier España, S.L. All rights reserved.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4612690&req=5

Figure 1: Cardiac magnetic resonance images of an anterior acute myocardial infarction in a pig model of ischemia/reperfusion injury. (A) Area at risk in T2-STIR sequence and hyperintense zone in anterior septum. (B) Necrotic zone in late enhancement sequence at the same zone. Published with publisher's permission. Original source: Fernández-Friera et al. (2013). Copyright © 2012 Sociedad Española de Cardiología. Publicado por Elsevier España, S.L. All rights reserved.

Mentions: Myocardial ischemia also leads to a variety of changes in tissue structure. Myocardial fibrosis is the main structural damage after ischemia/reperfusion injury. Scar tissue can be evaluated with inversion recovery echo-pulse sequences for late gadolinium enhancement to differentiate between reversible damage and infarcted myocardium after MI (Figure 1; Kim et al., 1999). Also, diffuse microfibrosis can be detected in the myocardium using recent T1-mapping sequences in animals (Stuckey et al., 2014; García-Álvarez et al., 2015). Nevertheless, efforts are still required to further improve and standardize protocols and to generate reference values for each animal model on cardiovascular disease.


Cardiovascular imaging: what have we learned from animal models?

Santos A, Fernández-Friera L, Villalba M, López-Melgar B, España S, Mateo J, Mota RA, Jiménez-Borreguero J, Ruiz-Cabello J - Front Pharmacol (2015)

Cardiac magnetic resonance images of an anterior acute myocardial infarction in a pig model of ischemia/reperfusion injury. (A) Area at risk in T2-STIR sequence and hyperintense zone in anterior septum. (B) Necrotic zone in late enhancement sequence at the same zone. Published with publisher's permission. Original source: Fernández-Friera et al. (2013). Copyright © 2012 Sociedad Española de Cardiología. Publicado por Elsevier España, S.L. All rights reserved.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4612690&req=5

Figure 1: Cardiac magnetic resonance images of an anterior acute myocardial infarction in a pig model of ischemia/reperfusion injury. (A) Area at risk in T2-STIR sequence and hyperintense zone in anterior septum. (B) Necrotic zone in late enhancement sequence at the same zone. Published with publisher's permission. Original source: Fernández-Friera et al. (2013). Copyright © 2012 Sociedad Española de Cardiología. Publicado por Elsevier España, S.L. All rights reserved.
Mentions: Myocardial ischemia also leads to a variety of changes in tissue structure. Myocardial fibrosis is the main structural damage after ischemia/reperfusion injury. Scar tissue can be evaluated with inversion recovery echo-pulse sequences for late gadolinium enhancement to differentiate between reversible damage and infarcted myocardium after MI (Figure 1; Kim et al., 1999). Also, diffuse microfibrosis can be detected in the myocardium using recent T1-mapping sequences in animals (Stuckey et al., 2014; García-Álvarez et al., 2015). Nevertheless, efforts are still required to further improve and standardize protocols and to generate reference values for each animal model on cardiovascular disease.

Bottom Line: Animal models have allowed for instance, (i) the technical development of different imaging tools, (ii) to test hypothesis generated from human studies and finally, (iii) to evaluate the translational relevance assessment of in vitro and ex-vivo results.We will also describe the physiological findings and/or learning processes for imaging applications coming from models of the most common cardiovascular diseases.Finally we will discuss the limitations and future of imaging research with animal models.

View Article: PubMed Central - PubMed

Affiliation: Centro Nacional de Investigaciones Cardiovasculares Carlos III Madrid, Spain ; CIBER de Enfermedades Respiratorias (CIBERES) Madrid, Spain ; Madrid-MIT M+Visión Consortium Madrid, Spain ; Department of Anesthesia, Massachusetts General Hospital, Harvard Medical School Boston, MA, USA.

ABSTRACT
Cardiovascular imaging has become an indispensable tool for patient diagnosis and follow up. Probably the wide clinical applications of imaging are due to the possibility of a detailed and high quality description and quantification of cardiovascular system structure and function. Also phenomena that involve complex physiological mechanisms and biochemical pathways, such as inflammation and ischemia, can be visualized in a non-destructive way. The widespread use and evolution of imaging would not have been possible without animal studies. Animal models have allowed for instance, (i) the technical development of different imaging tools, (ii) to test hypothesis generated from human studies and finally, (iii) to evaluate the translational relevance assessment of in vitro and ex-vivo results. In this review, we will critically describe the contribution of animal models to the use of biomedical imaging in cardiovascular medicine. We will discuss the characteristics of the most frequent models used in/for imaging studies. We will cover the major findings of animal studies focused in the cardiovascular use of the repeatedly used imaging techniques in clinical practice and experimental studies. We will also describe the physiological findings and/or learning processes for imaging applications coming from models of the most common cardiovascular diseases. In these diseases, imaging research using animals has allowed the study of aspects such as: ventricular size, shape, global function, and wall thickening, local myocardial function, myocardial perfusion, metabolism and energetic assessment, infarct quantification, vascular lesion characterization, myocardial fiber structure, and myocardial calcium uptake. Finally we will discuss the limitations and future of imaging research with animal models.

No MeSH data available.


Related in: MedlinePlus