Limits...
Language control is not a one-size-fits-all languages process: evidence from simultaneous interpretation students and the n-2 repetition cost.

Babcock L, Vallesi A - Front Psychol (2015)

Bottom Line: One possibility is that both languages are maintained active and inhibitory control is reduced.These results suggest that language control may be more complex than previously thought, with different mechanisms used for different languages.Further, these data represent the first use of the n-2 repetition cost as a measure to compare language control between groups.

View Article: PubMed Central - PubMed

Affiliation: Executive Function Laboratory, Department of Neuroscience, University of Padova Padova, Italy.

ABSTRACT
Simultaneous interpretation is an impressive cognitive feat which necessitates the simultaneous use of two languages and therefore begs the question: how is language management accomplished during interpretation? One possibility is that both languages are maintained active and inhibitory control is reduced. To examine whether inhibitory control is reduced after experience with interpretation, students with varying experience were assessed on a three language switching paradigm. This paradigm provides an empirical measure of the inhibition applied to abandoned languages, the n-2 repetition cost. The groups showed different patterns of n-2 repetition costs across the three languages. These differences, however, were not connected to experience with interpretation. Instead, they may be due to other language characteristics. Specifically, the L2 n-2 repetition cost negatively correlated with self-rated oral L2 proficiency, suggesting that language proficiency may affect the use of inhibitory control. The differences seen in the L1 n-2 repetition cost, alternatively, may be due to the differing predominant interactional contexts of the groups. These results suggest that language control may be more complex than previously thought, with different mechanisms used for different languages. Further, these data represent the first use of the n-2 repetition cost as a measure to compare language control between groups.

No MeSH data available.


Example items for (A) the language switching paradigm and (B) the task switching paradigm.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4612644&req=5

Figure 1: Example items for (A) the language switching paradigm and (B) the task switching paradigm.

Mentions: In the task, participants viewed a series of stimuli composed of the letter X, the # sign, and a digit between 2 and 9 (the digit 1 was excluded due to high phonological similarity across the languages used). The X and # were not informative, but rather were included to match the visual complexity of the stimuli used in the task switching paradigm. The stimuli components were black and were presented with equal probability in each of the six possible orders (e.g., X#2, 2#X). Participants were asked to name aloud the digit in their L1, L2, or L3 according to the cue presented. Cues were black frames surrounding the stimulus in the shape of a diamond, a hexagon, and a triangle (see Figure 1 for an example item). Graphic cues were chosen because they have been previously associated with larger n-2 repetition costs (Houghton et al., 2009; Guo et al., 2013). The cue-language pairings were counterbalanced across participants. A visual reminder of these pairings was placed below the computer screen to decrease working memory requirements and ensure correct assignment throughout the task. Each stimulus was categorized as either an n-2 repetition or non-repetition trial; the difference between these trial types quantifies inhibition. On n-2 repetition trials, the language used on the current trial was the same as that used on the n-2 trial (e.g., English – Italian – English). Thus participants were returning to a recently inhibited language on these trials. Conversely, on n-2 non-repetition trials, the current language differed from that used on the n-2 trial (e.g., French – Italian – English). Immediate language repetitions were excluded from the task design since their presence has been associated with a decrease in n-2 repetition cost (Philipp and Koch, 2006). Consequently, n-2 non-repetition trials made use of all three languages and n-2 repetition trials of two languages.


Language control is not a one-size-fits-all languages process: evidence from simultaneous interpretation students and the n-2 repetition cost.

Babcock L, Vallesi A - Front Psychol (2015)

Example items for (A) the language switching paradigm and (B) the task switching paradigm.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4612644&req=5

Figure 1: Example items for (A) the language switching paradigm and (B) the task switching paradigm.
Mentions: In the task, participants viewed a series of stimuli composed of the letter X, the # sign, and a digit between 2 and 9 (the digit 1 was excluded due to high phonological similarity across the languages used). The X and # were not informative, but rather were included to match the visual complexity of the stimuli used in the task switching paradigm. The stimuli components were black and were presented with equal probability in each of the six possible orders (e.g., X#2, 2#X). Participants were asked to name aloud the digit in their L1, L2, or L3 according to the cue presented. Cues were black frames surrounding the stimulus in the shape of a diamond, a hexagon, and a triangle (see Figure 1 for an example item). Graphic cues were chosen because they have been previously associated with larger n-2 repetition costs (Houghton et al., 2009; Guo et al., 2013). The cue-language pairings were counterbalanced across participants. A visual reminder of these pairings was placed below the computer screen to decrease working memory requirements and ensure correct assignment throughout the task. Each stimulus was categorized as either an n-2 repetition or non-repetition trial; the difference between these trial types quantifies inhibition. On n-2 repetition trials, the language used on the current trial was the same as that used on the n-2 trial (e.g., English – Italian – English). Thus participants were returning to a recently inhibited language on these trials. Conversely, on n-2 non-repetition trials, the current language differed from that used on the n-2 trial (e.g., French – Italian – English). Immediate language repetitions were excluded from the task design since their presence has been associated with a decrease in n-2 repetition cost (Philipp and Koch, 2006). Consequently, n-2 non-repetition trials made use of all three languages and n-2 repetition trials of two languages.

Bottom Line: One possibility is that both languages are maintained active and inhibitory control is reduced.These results suggest that language control may be more complex than previously thought, with different mechanisms used for different languages.Further, these data represent the first use of the n-2 repetition cost as a measure to compare language control between groups.

View Article: PubMed Central - PubMed

Affiliation: Executive Function Laboratory, Department of Neuroscience, University of Padova Padova, Italy.

ABSTRACT
Simultaneous interpretation is an impressive cognitive feat which necessitates the simultaneous use of two languages and therefore begs the question: how is language management accomplished during interpretation? One possibility is that both languages are maintained active and inhibitory control is reduced. To examine whether inhibitory control is reduced after experience with interpretation, students with varying experience were assessed on a three language switching paradigm. This paradigm provides an empirical measure of the inhibition applied to abandoned languages, the n-2 repetition cost. The groups showed different patterns of n-2 repetition costs across the three languages. These differences, however, were not connected to experience with interpretation. Instead, they may be due to other language characteristics. Specifically, the L2 n-2 repetition cost negatively correlated with self-rated oral L2 proficiency, suggesting that language proficiency may affect the use of inhibitory control. The differences seen in the L1 n-2 repetition cost, alternatively, may be due to the differing predominant interactional contexts of the groups. These results suggest that language control may be more complex than previously thought, with different mechanisms used for different languages. Further, these data represent the first use of the n-2 repetition cost as a measure to compare language control between groups.

No MeSH data available.