Limits...
One-Step Synthesis of Titanium Oxyhydroxy-Fluoride Rods and Research on the Electrochemical Performance for Lithium-ion Batteries and Sodium-ion Batteries.

Li B, Gao Z, Wang D, Hao Q, Wang Y, Wang Y, Tang K - Nanoscale Res Lett (2015)

Bottom Line: Titanium oxyhydroxy-fluoride, TiO0.9(OH)0.9F1.2 · 0.59H2O rods with a hexagonal tungsten bronze (HTB) structure, was synthesized via a facile one-step solvothermal method.Different rod morphologies which ranged from nanoscale to submicron scale were simply obtained by adjusting reaction conditions.Electrochemical tests revealed that, for LIBs, titanium oxyhydroxy-fluoride exhibited a stabilized reversible capacity of 200 mAh g(-1) at 25 mA g(-1) up to 120 cycles in the electrode potential range of 3.0-1.2 V and 140 mAh g(-1) at 250 mA g(-1) up to 500 cycles, especially; for SIBs, a high capacity of 100 mAh g(-1) was maintained at 25 mA g(-1) after 115 cycles in the potential range of 2.9-0.5 V.

View Article: PubMed Central - PubMed

Affiliation: Department of Chemistry and Hefei National Laboratory for Physical Science at Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China.

ABSTRACT
Titanium oxyhydroxy-fluoride, TiO0.9(OH)0.9F1.2 · 0.59H2O rods with a hexagonal tungsten bronze (HTB) structure, was synthesized via a facile one-step solvothermal method. The structure, morphology, and component of the products were characterized by X-ray powder diffraction (XRD), thermogravimetry (TG), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), inductively coupled plasma optical emission spectroscopy (ICP-OES), ion chromatograph, energy-dispersive X-ray (EDX) analyses, and so on. Different rod morphologies which ranged from nanoscale to submicron scale were simply obtained by adjusting reaction conditions. With one-dimension channels for Li/Na intercalation/de-intercalation, the electrochemical performance of titanium oxyhydroxy-fluoride for both lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) was also studied. Electrochemical tests revealed that, for LIBs, titanium oxyhydroxy-fluoride exhibited a stabilized reversible capacity of 200 mAh g(-1) at 25 mA g(-1) up to 120 cycles in the electrode potential range of 3.0-1.2 V and 140 mAh g(-1) at 250 mA g(-1) up to 500 cycles, especially; for SIBs, a high capacity of 100 mAh g(-1) was maintained at 25 mA g(-1) after 115 cycles in the potential range of 2.9-0.5 V.

No MeSH data available.


Related in: MedlinePlus

a Charge and discharge curves of TiO0.9(OH)0.9F1.2 · 0.59H2O for SIBs in the potential range of 2.9–0.5 V; several selected cycles are shown for clarity; b first discharge curve of TiO0.9(OH)0.9F1.2 · 0.59H2O in the potential range of 2.9–0.05 V; c the former 5 cycles of hexagonal TiOF2 half-cell for SIBs; all the half-cells are performed at 25 mA g−1; d cycling performance of TiO0.9(OH)0.9F1.2 · 0.59H2O for SIBs; and e rate capacity of one TiO0.9(OH)0.9F1.2 · 0.59H2O half-cell for SIBs between 2.9 and 0.5 V, different current densities are labeled
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4608954&req=5

Fig5: a Charge and discharge curves of TiO0.9(OH)0.9F1.2 · 0.59H2O for SIBs in the potential range of 2.9–0.5 V; several selected cycles are shown for clarity; b first discharge curve of TiO0.9(OH)0.9F1.2 · 0.59H2O in the potential range of 2.9–0.05 V; c the former 5 cycles of hexagonal TiOF2 half-cell for SIBs; all the half-cells are performed at 25 mA g−1; d cycling performance of TiO0.9(OH)0.9F1.2 · 0.59H2O for SIBs; and e rate capacity of one TiO0.9(OH)0.9F1.2 · 0.59H2O half-cell for SIBs between 2.9 and 0.5 V, different current densities are labeled

Mentions: To investigate the electrochemical properties of titanium oxyhydroxy-fluoride TiO0.9(OH)0.9F1.2 · 0.59H2O, both LIBs and SIBs are performed by using galvanostatic charge/discharge method. The results are shown in Figs. 4 and 5. For LIBs, during the first cycle, the discharge plateau appears at 2.4 V and last until the electrode potential reaches 1.2 V, and the only one plateau suggests that there is only one lithiated TiO0.9(OH)0.9F1.2 · 0.59H2O phase ,i.e., no other phase transition of TiO0.9(OH)0.9F1.2 · 0.59H2O is observed during the lithiation of TiO0.9(OH)0.9F1.2 · 0.59H2O. The potential range where Li intercalation/de-intercalation occurs in is 3.0–1.2 V, which can also be illustrated by Fig. 4b. The specific capacity of the first discharge and the first charge is 270 mAh g−1 and 200 mAh g−1, while the specific capacities of the following cycles, whether of charge or of discharge, are approx 200 mAh g−1. TiO0.9(OH)0.9F1.2 · 0.59H2O exhibits stabilized 200, 170, 150, and 140 mAh g−1 at 25, 50, 125, and 250 mA g−1, respectively, in the electrode potential range of 3–1.2 V without observed fading for 120–500 cycles (Fig. 4c and d), which is pretty satisfying and illustrates the highly reversible nature. Besides, after cycling at 25 mA g−1 again, the specific capacity of TiO0.9(OH)0.9F1.2 · 0.59H2O is recovered (Fig. 4d). It is noteworthy that the stabilized 200 mAh g−1 capacity of TiO0.9(OH)0.9F1.2 · 0.59H2O is quite large, compared with that of Li4Ti5O12 (theoretical capacity 170 mAh g−1). The good rate capacity and cycling stability are connected with the one-dimension channels in the HTB structure and the morphology of homogeneous rods.Fig. 4


One-Step Synthesis of Titanium Oxyhydroxy-Fluoride Rods and Research on the Electrochemical Performance for Lithium-ion Batteries and Sodium-ion Batteries.

Li B, Gao Z, Wang D, Hao Q, Wang Y, Wang Y, Tang K - Nanoscale Res Lett (2015)

a Charge and discharge curves of TiO0.9(OH)0.9F1.2 · 0.59H2O for SIBs in the potential range of 2.9–0.5 V; several selected cycles are shown for clarity; b first discharge curve of TiO0.9(OH)0.9F1.2 · 0.59H2O in the potential range of 2.9–0.05 V; c the former 5 cycles of hexagonal TiOF2 half-cell for SIBs; all the half-cells are performed at 25 mA g−1; d cycling performance of TiO0.9(OH)0.9F1.2 · 0.59H2O for SIBs; and e rate capacity of one TiO0.9(OH)0.9F1.2 · 0.59H2O half-cell for SIBs between 2.9 and 0.5 V, different current densities are labeled
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4608954&req=5

Fig5: a Charge and discharge curves of TiO0.9(OH)0.9F1.2 · 0.59H2O for SIBs in the potential range of 2.9–0.5 V; several selected cycles are shown for clarity; b first discharge curve of TiO0.9(OH)0.9F1.2 · 0.59H2O in the potential range of 2.9–0.05 V; c the former 5 cycles of hexagonal TiOF2 half-cell for SIBs; all the half-cells are performed at 25 mA g−1; d cycling performance of TiO0.9(OH)0.9F1.2 · 0.59H2O for SIBs; and e rate capacity of one TiO0.9(OH)0.9F1.2 · 0.59H2O half-cell for SIBs between 2.9 and 0.5 V, different current densities are labeled
Mentions: To investigate the electrochemical properties of titanium oxyhydroxy-fluoride TiO0.9(OH)0.9F1.2 · 0.59H2O, both LIBs and SIBs are performed by using galvanostatic charge/discharge method. The results are shown in Figs. 4 and 5. For LIBs, during the first cycle, the discharge plateau appears at 2.4 V and last until the electrode potential reaches 1.2 V, and the only one plateau suggests that there is only one lithiated TiO0.9(OH)0.9F1.2 · 0.59H2O phase ,i.e., no other phase transition of TiO0.9(OH)0.9F1.2 · 0.59H2O is observed during the lithiation of TiO0.9(OH)0.9F1.2 · 0.59H2O. The potential range where Li intercalation/de-intercalation occurs in is 3.0–1.2 V, which can also be illustrated by Fig. 4b. The specific capacity of the first discharge and the first charge is 270 mAh g−1 and 200 mAh g−1, while the specific capacities of the following cycles, whether of charge or of discharge, are approx 200 mAh g−1. TiO0.9(OH)0.9F1.2 · 0.59H2O exhibits stabilized 200, 170, 150, and 140 mAh g−1 at 25, 50, 125, and 250 mA g−1, respectively, in the electrode potential range of 3–1.2 V without observed fading for 120–500 cycles (Fig. 4c and d), which is pretty satisfying and illustrates the highly reversible nature. Besides, after cycling at 25 mA g−1 again, the specific capacity of TiO0.9(OH)0.9F1.2 · 0.59H2O is recovered (Fig. 4d). It is noteworthy that the stabilized 200 mAh g−1 capacity of TiO0.9(OH)0.9F1.2 · 0.59H2O is quite large, compared with that of Li4Ti5O12 (theoretical capacity 170 mAh g−1). The good rate capacity and cycling stability are connected with the one-dimension channels in the HTB structure and the morphology of homogeneous rods.Fig. 4

Bottom Line: Titanium oxyhydroxy-fluoride, TiO0.9(OH)0.9F1.2 · 0.59H2O rods with a hexagonal tungsten bronze (HTB) structure, was synthesized via a facile one-step solvothermal method.Different rod morphologies which ranged from nanoscale to submicron scale were simply obtained by adjusting reaction conditions.Electrochemical tests revealed that, for LIBs, titanium oxyhydroxy-fluoride exhibited a stabilized reversible capacity of 200 mAh g(-1) at 25 mA g(-1) up to 120 cycles in the electrode potential range of 3.0-1.2 V and 140 mAh g(-1) at 250 mA g(-1) up to 500 cycles, especially; for SIBs, a high capacity of 100 mAh g(-1) was maintained at 25 mA g(-1) after 115 cycles in the potential range of 2.9-0.5 V.

View Article: PubMed Central - PubMed

Affiliation: Department of Chemistry and Hefei National Laboratory for Physical Science at Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China.

ABSTRACT
Titanium oxyhydroxy-fluoride, TiO0.9(OH)0.9F1.2 · 0.59H2O rods with a hexagonal tungsten bronze (HTB) structure, was synthesized via a facile one-step solvothermal method. The structure, morphology, and component of the products were characterized by X-ray powder diffraction (XRD), thermogravimetry (TG), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), inductively coupled plasma optical emission spectroscopy (ICP-OES), ion chromatograph, energy-dispersive X-ray (EDX) analyses, and so on. Different rod morphologies which ranged from nanoscale to submicron scale were simply obtained by adjusting reaction conditions. With one-dimension channels for Li/Na intercalation/de-intercalation, the electrochemical performance of titanium oxyhydroxy-fluoride for both lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) was also studied. Electrochemical tests revealed that, for LIBs, titanium oxyhydroxy-fluoride exhibited a stabilized reversible capacity of 200 mAh g(-1) at 25 mA g(-1) up to 120 cycles in the electrode potential range of 3.0-1.2 V and 140 mAh g(-1) at 250 mA g(-1) up to 500 cycles, especially; for SIBs, a high capacity of 100 mAh g(-1) was maintained at 25 mA g(-1) after 115 cycles in the potential range of 2.9-0.5 V.

No MeSH data available.


Related in: MedlinePlus