Limits...
Synthesis of Quercetin Loaded Nanoparticles Based on Alginate for Pb(II) Adsorption in Aqueous Solution.

Qi Y, Jiang M, Cui YL, Zhao L, Zhou X - Nanoscale Res Lett (2015)

Bottom Line: Characterization of AN and Q-AN were analysed by transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FT-IR), X-ray diffractometer (XRD), and thermogravimetric analysis (TG-DTG-DSC).AN and Q-AN, with a diameter of 95.06 and 58.23 nm, were constituted by many small primary nanoparticles.AN and Q-AN would probably be applied as adsorbents to remove Pb(II) and then recover it from wastewater for the advantages of simple preparation, high adsorption capacity, and recyclability.

View Article: PubMed Central - PubMed

Affiliation: Faculty of Environmental Science and Engineering, Tianjin University, No. 92, Weijin Rd., Nankai District, Tianjin, 300072, China. qiyun@tju.edu.cn.

ABSTRACT
Pb(II) is a representative heavy metal in industrial wastewater, which may frequently cause serious hazard to living organisms. In this study, comparative studies between alginate nanoparticles (AN) and quercetin-decorated alginate nanoparticles (Q-AN) were investigated for Pb(II) ion adsorption. Characterization of AN and Q-AN were analysed by transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FT-IR), X-ray diffractometer (XRD), and thermogravimetric analysis (TG-DTG-DSC). The main operating conditions such as pH, initial concentration of Pb(II), and co-existing metal ions were also investigated using a batch experiment. AN and Q-AN, with a diameter of 95.06 and 58.23 nm, were constituted by many small primary nanoparticles. It revealed that when initial concentration of Pb(II) is between 250 and 1250 mg L(-1), the adsorption rate and equilibrium adsorption were increased with the increase of pH from 2 to 7. The maximum adsorption capacities of 147.02 and 140.37 mg L(-1) were achieved by AN and Q-AN, respectively, with 0.2 g adsorbents in 1000 mg L(-1) Pb(II) at pH 7. The adsorption rate of Pb(II) was little influenced by the co-existing metal ions, such as Mn(II), Co(II), and Cd(II). Desorption experiments showed that Q-AN possessed a higher desorption rate than AN, which were 90.07 and 83.26 %, respectively. AN and Q-AN would probably be applied as adsorbents to remove Pb(II) and then recover it from wastewater for the advantages of simple preparation, high adsorption capacity, and recyclability.

No MeSH data available.


Related in: MedlinePlus

XPS spectra of Pb(II)-adsorbed Q-AN
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4608953&req=5

Fig5: XPS spectra of Pb(II)-adsorbed Q-AN

Mentions: Adsorptive removal of Pb(II) at various initial concentration from 250 to 1250 mg L−1 was also studied. As illustrated by AN and Q-AN adsorption curves (Fig. 4c), the Pb(II) adsorption rate decreased with the increase of initial Pb(II) concentration. It was attributed to the enhanced quantity of Pb(II) competition for the limited adsorption sites, and thus, the adsorption rate decreased at a higher initial Pb(II) concentration. However, Fig. 4d demonstrated that a higher initial Pb(II) concentration gave rise to a higher equilibrium adsorption capacity. The reason was that superfluous Pb(II) made sure of a more efficient use of the adsorbent. The mechanism for Pb(II) adsorption was further studied by investigating the XPS spectra of Pb(II)-adsorbed Q-AN (Fig. 5). The high-resolution spectra showed two peaks at 138.6 and 143.0 eV, which were primarily attributable to binding energies for Pb 4f7/2 and Pb 4f5/2 orbital, respectively [36]. Thus, it demonstrated the existence of Pb2+ (Pb–O bond), and this was consistent with previous reports [11, 37].Fig. 5


Synthesis of Quercetin Loaded Nanoparticles Based on Alginate for Pb(II) Adsorption in Aqueous Solution.

Qi Y, Jiang M, Cui YL, Zhao L, Zhou X - Nanoscale Res Lett (2015)

XPS spectra of Pb(II)-adsorbed Q-AN
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4608953&req=5

Fig5: XPS spectra of Pb(II)-adsorbed Q-AN
Mentions: Adsorptive removal of Pb(II) at various initial concentration from 250 to 1250 mg L−1 was also studied. As illustrated by AN and Q-AN adsorption curves (Fig. 4c), the Pb(II) adsorption rate decreased with the increase of initial Pb(II) concentration. It was attributed to the enhanced quantity of Pb(II) competition for the limited adsorption sites, and thus, the adsorption rate decreased at a higher initial Pb(II) concentration. However, Fig. 4d demonstrated that a higher initial Pb(II) concentration gave rise to a higher equilibrium adsorption capacity. The reason was that superfluous Pb(II) made sure of a more efficient use of the adsorbent. The mechanism for Pb(II) adsorption was further studied by investigating the XPS spectra of Pb(II)-adsorbed Q-AN (Fig. 5). The high-resolution spectra showed two peaks at 138.6 and 143.0 eV, which were primarily attributable to binding energies for Pb 4f7/2 and Pb 4f5/2 orbital, respectively [36]. Thus, it demonstrated the existence of Pb2+ (Pb–O bond), and this was consistent with previous reports [11, 37].Fig. 5

Bottom Line: Characterization of AN and Q-AN were analysed by transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FT-IR), X-ray diffractometer (XRD), and thermogravimetric analysis (TG-DTG-DSC).AN and Q-AN, with a diameter of 95.06 and 58.23 nm, were constituted by many small primary nanoparticles.AN and Q-AN would probably be applied as adsorbents to remove Pb(II) and then recover it from wastewater for the advantages of simple preparation, high adsorption capacity, and recyclability.

View Article: PubMed Central - PubMed

Affiliation: Faculty of Environmental Science and Engineering, Tianjin University, No. 92, Weijin Rd., Nankai District, Tianjin, 300072, China. qiyun@tju.edu.cn.

ABSTRACT
Pb(II) is a representative heavy metal in industrial wastewater, which may frequently cause serious hazard to living organisms. In this study, comparative studies between alginate nanoparticles (AN) and quercetin-decorated alginate nanoparticles (Q-AN) were investigated for Pb(II) ion adsorption. Characterization of AN and Q-AN were analysed by transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FT-IR), X-ray diffractometer (XRD), and thermogravimetric analysis (TG-DTG-DSC). The main operating conditions such as pH, initial concentration of Pb(II), and co-existing metal ions were also investigated using a batch experiment. AN and Q-AN, with a diameter of 95.06 and 58.23 nm, were constituted by many small primary nanoparticles. It revealed that when initial concentration of Pb(II) is between 250 and 1250 mg L(-1), the adsorption rate and equilibrium adsorption were increased with the increase of pH from 2 to 7. The maximum adsorption capacities of 147.02 and 140.37 mg L(-1) were achieved by AN and Q-AN, respectively, with 0.2 g adsorbents in 1000 mg L(-1) Pb(II) at pH 7. The adsorption rate of Pb(II) was little influenced by the co-existing metal ions, such as Mn(II), Co(II), and Cd(II). Desorption experiments showed that Q-AN possessed a higher desorption rate than AN, which were 90.07 and 83.26 %, respectively. AN and Q-AN would probably be applied as adsorbents to remove Pb(II) and then recover it from wastewater for the advantages of simple preparation, high adsorption capacity, and recyclability.

No MeSH data available.


Related in: MedlinePlus