Comparative Study on Statistical-Variation Tolerance Between Complementary Crossbar and Twin Crossbar of Binary Nano-scale Memristors for Pattern Recognition.
Bottom Line:
In this comparative study, 10 greyscale images and 26 black-and-white alphabet characters are tested using the circuit simulator to compare the recognition rate with varying statistical variation and correlation parameters.As with the simulation results of 10 greyscale image recognitions, the twin crossbar shows better recognition rate by 4 % on average than the complementary one, when the inter-array correlation = 1 and intra-array correlation = 0.When the inter-array correlation = 1 and intra-array correlation = 1, the twin architecture is better by 6 % on average than the complementary one.By summary, we can conclude that the twin crossbar is more robust than the complementary one under the same amounts of statistical variation and correlation.
View Article:
PubMed Central - PubMed
Affiliation: School of Electrical Engineering, Kookmin University, 77, Jeongneung-ro, Seongbuk-gu, Seoul, 136-702, South Korea. sontn@kookmin.ac.kr.
ABSTRACT
This paper performs a comparative study on the statistical-variation tolerance between two crossbar architectures which are the complementary and twin architectures. In this comparative study, 10 greyscale images and 26 black-and-white alphabet characters are tested using the circuit simulator to compare the recognition rate with varying statistical variation and correlation parameters.As with the simulation results of 10 greyscale image recognitions, the twin crossbar shows better recognition rate by 4 % on average than the complementary one, when the inter-array correlation = 1 and intra-array correlation = 0. When the inter-array correlation = 1 and intra-array correlation = 1, the twin architecture can recognize better by 5.6 % on average than the complementary one.Similarly, when the inter-array correlation = 1 and intra-array correlation = 0, the twin architecture can recognize 26 alphabet characters better by 4.5 % on average than the complementary one. When the inter-array correlation = 1 and intra-array correlation = 1, the twin architecture is better by 6 % on average than the complementary one. By summary, we can conclude that the twin crossbar is more robust than the complementary one under the same amounts of statistical variation and correlation. No MeSH data available. |
Related In:
Results -
Collection
License getmorefigures.php?uid=PMC4608951&req=5
Mentions: The statistical simulation was performed using the Monte Carlo method by Cadence Spectre [13]. Here, the percentage variation in memristance was assumed from 10 to 40 %, as shown in Table 1. The statistical distribution function is assumed the Gaussian distribution function. Another important parameter in the statistical simulation is the correlation. As indicated in Fig. 2a, the complementary crossbar has two M+ and M− arrays, where M− is the inversion of M+ array. With two M+ and M− arrays, we can think of both intra-array correlation and inter-array correlation in performing the statistical simulation. Figure 3a shows the inter-array correlation and intra-array correlation in the complementary crossbar, where M+ array and M− array are complementary with each other. If the correlation value is 1, it means that all the elements are varied in the same way. When the correlation is 0, all the elements are varied in random. Figure 3b shows the inter-array and intra-array correlations for the twin crossbar which is composed of two identical M+ arrays instead of using M+ and M− arrays.Fig. 3 |
View Article: PubMed Central - PubMed
Affiliation: School of Electrical Engineering, Kookmin University, 77, Jeongneung-ro, Seongbuk-gu, Seoul, 136-702, South Korea. sontn@kookmin.ac.kr.
No MeSH data available.