Limits...
Comparative Study on Statistical-Variation Tolerance Between Complementary Crossbar and Twin Crossbar of Binary Nano-scale Memristors for Pattern Recognition.

Truong SN, Shin S, Byeon SD, Song J, Mo HS, Min KS - Nanoscale Res Lett (2015)

Bottom Line: In this comparative study, 10 greyscale images and 26 black-and-white alphabet characters are tested using the circuit simulator to compare the recognition rate with varying statistical variation and correlation parameters.As with the simulation results of 10 greyscale image recognitions, the twin crossbar shows better recognition rate by 4 % on average than the complementary one, when the inter-array correlation = 1 and intra-array correlation = 0.When the inter-array correlation = 1 and intra-array correlation = 1, the twin architecture is better by 6 % on average than the complementary one.By summary, we can conclude that the twin crossbar is more robust than the complementary one under the same amounts of statistical variation and correlation.

View Article: PubMed Central - PubMed

Affiliation: School of Electrical Engineering, Kookmin University, 77, Jeongneung-ro, Seongbuk-gu, Seoul, 136-702, South Korea. sontn@kookmin.ac.kr.

ABSTRACT
This paper performs a comparative study on the statistical-variation tolerance between two crossbar architectures which are the complementary and twin architectures. In this comparative study, 10 greyscale images and 26 black-and-white alphabet characters are tested using the circuit simulator to compare the recognition rate with varying statistical variation and correlation parameters.As with the simulation results of 10 greyscale image recognitions, the twin crossbar shows better recognition rate by 4 % on average than the complementary one, when the inter-array correlation = 1 and intra-array correlation = 0. When the inter-array correlation = 1 and intra-array correlation = 1, the twin architecture can recognize better by 5.6 % on average than the complementary one.Similarly, when the inter-array correlation = 1 and intra-array correlation = 0, the twin architecture can recognize 26 alphabet characters better by 4.5 % on average than the complementary one. When the inter-array correlation = 1 and intra-array correlation = 1, the twin architecture is better by 6 % on average than the complementary one. By summary, we can conclude that the twin crossbar is more robust than the complementary one under the same amounts of statistical variation and correlation.

No MeSH data available.


The operation of crossbar circuits of binary memristors for pattern recognition with a one crossbar array and b two crossbar arrays
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4608951&req=5

Fig1: The operation of crossbar circuits of binary memristors for pattern recognition with a one crossbar array and b two crossbar arrays

Mentions: The detailed operation of crossbar circuit which can perform pattern recognition is explained in Fig. 1a. Here, the solid box represents the input ‘H’ voltage and the open box represents the input ‘L’. Similarly, the solid circle in the array represents the stored ‘LRS’ data and the open circle represents the stored ‘HRS’. If the input ‘H’ is applied to the ‘LRS’ cell, it means that the input pixel matches with the stored data. In Fig. 1a, the input vector of ‘HHLL’ is compared with the four columns which are ‘LRS-LRS-LRS-LRS’, ‘LRS-LRS-LRS-HRS’, ‘LRS-HRS-HRS-LRS’ and ‘LRS-LRS-HRS-HRS’. As you see in Fig. 1a, the fourth column exactly matches with the input vector. However, here, the first, second and fourth columns show the same number of matched cells, as shown in Fig. 1a. The number of matched cells for each column is shown below the array of M+ in Fig. 1a. Thus, we cannot decide which column is the best match with the input vector in Fig. 1a.Fig. 1


Comparative Study on Statistical-Variation Tolerance Between Complementary Crossbar and Twin Crossbar of Binary Nano-scale Memristors for Pattern Recognition.

Truong SN, Shin S, Byeon SD, Song J, Mo HS, Min KS - Nanoscale Res Lett (2015)

The operation of crossbar circuits of binary memristors for pattern recognition with a one crossbar array and b two crossbar arrays
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4608951&req=5

Fig1: The operation of crossbar circuits of binary memristors for pattern recognition with a one crossbar array and b two crossbar arrays
Mentions: The detailed operation of crossbar circuit which can perform pattern recognition is explained in Fig. 1a. Here, the solid box represents the input ‘H’ voltage and the open box represents the input ‘L’. Similarly, the solid circle in the array represents the stored ‘LRS’ data and the open circle represents the stored ‘HRS’. If the input ‘H’ is applied to the ‘LRS’ cell, it means that the input pixel matches with the stored data. In Fig. 1a, the input vector of ‘HHLL’ is compared with the four columns which are ‘LRS-LRS-LRS-LRS’, ‘LRS-LRS-LRS-HRS’, ‘LRS-HRS-HRS-LRS’ and ‘LRS-LRS-HRS-HRS’. As you see in Fig. 1a, the fourth column exactly matches with the input vector. However, here, the first, second and fourth columns show the same number of matched cells, as shown in Fig. 1a. The number of matched cells for each column is shown below the array of M+ in Fig. 1a. Thus, we cannot decide which column is the best match with the input vector in Fig. 1a.Fig. 1

Bottom Line: In this comparative study, 10 greyscale images and 26 black-and-white alphabet characters are tested using the circuit simulator to compare the recognition rate with varying statistical variation and correlation parameters.As with the simulation results of 10 greyscale image recognitions, the twin crossbar shows better recognition rate by 4 % on average than the complementary one, when the inter-array correlation = 1 and intra-array correlation = 0.When the inter-array correlation = 1 and intra-array correlation = 1, the twin architecture is better by 6 % on average than the complementary one.By summary, we can conclude that the twin crossbar is more robust than the complementary one under the same amounts of statistical variation and correlation.

View Article: PubMed Central - PubMed

Affiliation: School of Electrical Engineering, Kookmin University, 77, Jeongneung-ro, Seongbuk-gu, Seoul, 136-702, South Korea. sontn@kookmin.ac.kr.

ABSTRACT
This paper performs a comparative study on the statistical-variation tolerance between two crossbar architectures which are the complementary and twin architectures. In this comparative study, 10 greyscale images and 26 black-and-white alphabet characters are tested using the circuit simulator to compare the recognition rate with varying statistical variation and correlation parameters.As with the simulation results of 10 greyscale image recognitions, the twin crossbar shows better recognition rate by 4 % on average than the complementary one, when the inter-array correlation = 1 and intra-array correlation = 0. When the inter-array correlation = 1 and intra-array correlation = 1, the twin architecture can recognize better by 5.6 % on average than the complementary one.Similarly, when the inter-array correlation = 1 and intra-array correlation = 0, the twin architecture can recognize 26 alphabet characters better by 4.5 % on average than the complementary one. When the inter-array correlation = 1 and intra-array correlation = 1, the twin architecture is better by 6 % on average than the complementary one. By summary, we can conclude that the twin crossbar is more robust than the complementary one under the same amounts of statistical variation and correlation.

No MeSH data available.