Limits...
Pedunculopontine arousal system physiology-Implications for schizophrenia.

Garcia-Rill E, D'Onofrio S, Mahaffey S, Bisagno V, Urbano FJ - Sleep Sci (2015)

Bottom Line: There is also dysregulation of gamma band activity, suggestive of disturbances in a host of arousal-related mechanisms.This review examines the role of the reticular activating system, especially the pedunculopontine nucleus, in the symptoms of the disease.Recent discoveries on the physiology of the pedunculopontine nucleus help explain many of these disorders of arousal in, and point to novel therapeutic avenues for, schizophrenia.

View Article: PubMed Central - PubMed

Affiliation: Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR, United States.

ABSTRACT
Schizophrenia is characterized by major sleep/wake disturbances including increased vigilance and arousal, decreased slow wave sleep, and increased REM sleep drive. Other arousal-related symptoms include sensory gating deficits as exemplified by decreased habituation of the blink reflex. There is also dysregulation of gamma band activity, suggestive of disturbances in a host of arousal-related mechanisms. This review examines the role of the reticular activating system, especially the pedunculopontine nucleus, in the symptoms of the disease. Recent discoveries on the physiology of the pedunculopontine nucleus help explain many of these disorders of arousal in, and point to novel therapeutic avenues for, schizophrenia.

No MeSH data available.


Related in: MedlinePlus

Effects of NCS-1 on gamma oscillations in PPN neurons. (A) Representative 1 s long current ramp-induced oscillations in a PPN neuron in fast synaptic blockers and tetrodotoxin in the extracellular solution and 1 μM NCS-1 in the recording pipette (left record, light gray). After 10 min of NCS-1 diffusing into the cell, the oscillatory activity increased slightly (middle record, dark gray). However, after 25 min of NCS-1 diffusion both oscillation amplitude and frequency were increased (right record, black). (B) Power spectrum of the records shown in (A) showing the increased amplitude and frequency of oscillations after 25 min exposure to 1 μM NCS-1. (C) Representative ramp-induced oscillations recorded during 1 s long current ramps in the presence of fast synaptic blockers and tetrodotoxin and NCS-1 at 10 μM in the recording pipette (left record, light gray). After 10 min of NCS-1 diffusing into the cell, the oscillation amplitude increased slightly (middle record, dark gray). However, testing at 25 min showed a decrease in amplitude compared to both 0 min and 10 min recordings (right record, black). (D) Power spectrum of the records shown in (C) demonstrating the slight increase in amplitude at 10 min, and the subsequent decrease at 25 min.
© Copyright Policy - CC BY-NC-ND
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4608902&req=5

f0005: Effects of NCS-1 on gamma oscillations in PPN neurons. (A) Representative 1 s long current ramp-induced oscillations in a PPN neuron in fast synaptic blockers and tetrodotoxin in the extracellular solution and 1 μM NCS-1 in the recording pipette (left record, light gray). After 10 min of NCS-1 diffusing into the cell, the oscillatory activity increased slightly (middle record, dark gray). However, after 25 min of NCS-1 diffusion both oscillation amplitude and frequency were increased (right record, black). (B) Power spectrum of the records shown in (A) showing the increased amplitude and frequency of oscillations after 25 min exposure to 1 μM NCS-1. (C) Representative ramp-induced oscillations recorded during 1 s long current ramps in the presence of fast synaptic blockers and tetrodotoxin and NCS-1 at 10 μM in the recording pipette (left record, light gray). After 10 min of NCS-1 diffusing into the cell, the oscillation amplitude increased slightly (middle record, dark gray). However, testing at 25 min showed a decrease in amplitude compared to both 0 min and 10 min recordings (right record, black). (D) Power spectrum of the records shown in (C) demonstrating the slight increase in amplitude at 10 min, and the subsequent decrease at 25 min.

Mentions: Recordings in PPN neurons using 1 μM NCS-1 were found to increase the amplitude and frequency of ramp-induced oscillations within ~25 min of diffusion into the cell. Fig. 1 is a representative example of ramp-induced membrane potential oscillations in a PPN neuron in the presence of synaptic blockers and tetrodotoxin. Shortly after patching, the ramp typically induced low amplitude oscillations in the beta/gamma range. After 10 min of recording, some increase in the oscillation amplitude and frequency was present. After 25 min of recording, NCS-1 at 1 μM significantly increased the amplitude and frequency of oscillations. Control cells recorded without NCS-1 in the pipette manifested no significant changes in amplitude or frequency throughout the 30 min recording period. These values were not significantly different from each of the 0 min recordings using pipettes with NCS-1, that is, before NCS-1 induced significant effects, so that the 0 min recordings are an accurate representation of control levels.


Pedunculopontine arousal system physiology-Implications for schizophrenia.

Garcia-Rill E, D'Onofrio S, Mahaffey S, Bisagno V, Urbano FJ - Sleep Sci (2015)

Effects of NCS-1 on gamma oscillations in PPN neurons. (A) Representative 1 s long current ramp-induced oscillations in a PPN neuron in fast synaptic blockers and tetrodotoxin in the extracellular solution and 1 μM NCS-1 in the recording pipette (left record, light gray). After 10 min of NCS-1 diffusing into the cell, the oscillatory activity increased slightly (middle record, dark gray). However, after 25 min of NCS-1 diffusion both oscillation amplitude and frequency were increased (right record, black). (B) Power spectrum of the records shown in (A) showing the increased amplitude and frequency of oscillations after 25 min exposure to 1 μM NCS-1. (C) Representative ramp-induced oscillations recorded during 1 s long current ramps in the presence of fast synaptic blockers and tetrodotoxin and NCS-1 at 10 μM in the recording pipette (left record, light gray). After 10 min of NCS-1 diffusing into the cell, the oscillation amplitude increased slightly (middle record, dark gray). However, testing at 25 min showed a decrease in amplitude compared to both 0 min and 10 min recordings (right record, black). (D) Power spectrum of the records shown in (C) demonstrating the slight increase in amplitude at 10 min, and the subsequent decrease at 25 min.
© Copyright Policy - CC BY-NC-ND
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4608902&req=5

f0005: Effects of NCS-1 on gamma oscillations in PPN neurons. (A) Representative 1 s long current ramp-induced oscillations in a PPN neuron in fast synaptic blockers and tetrodotoxin in the extracellular solution and 1 μM NCS-1 in the recording pipette (left record, light gray). After 10 min of NCS-1 diffusing into the cell, the oscillatory activity increased slightly (middle record, dark gray). However, after 25 min of NCS-1 diffusion both oscillation amplitude and frequency were increased (right record, black). (B) Power spectrum of the records shown in (A) showing the increased amplitude and frequency of oscillations after 25 min exposure to 1 μM NCS-1. (C) Representative ramp-induced oscillations recorded during 1 s long current ramps in the presence of fast synaptic blockers and tetrodotoxin and NCS-1 at 10 μM in the recording pipette (left record, light gray). After 10 min of NCS-1 diffusing into the cell, the oscillation amplitude increased slightly (middle record, dark gray). However, testing at 25 min showed a decrease in amplitude compared to both 0 min and 10 min recordings (right record, black). (D) Power spectrum of the records shown in (C) demonstrating the slight increase in amplitude at 10 min, and the subsequent decrease at 25 min.
Mentions: Recordings in PPN neurons using 1 μM NCS-1 were found to increase the amplitude and frequency of ramp-induced oscillations within ~25 min of diffusion into the cell. Fig. 1 is a representative example of ramp-induced membrane potential oscillations in a PPN neuron in the presence of synaptic blockers and tetrodotoxin. Shortly after patching, the ramp typically induced low amplitude oscillations in the beta/gamma range. After 10 min of recording, some increase in the oscillation amplitude and frequency was present. After 25 min of recording, NCS-1 at 1 μM significantly increased the amplitude and frequency of oscillations. Control cells recorded without NCS-1 in the pipette manifested no significant changes in amplitude or frequency throughout the 30 min recording period. These values were not significantly different from each of the 0 min recordings using pipettes with NCS-1, that is, before NCS-1 induced significant effects, so that the 0 min recordings are an accurate representation of control levels.

Bottom Line: There is also dysregulation of gamma band activity, suggestive of disturbances in a host of arousal-related mechanisms.This review examines the role of the reticular activating system, especially the pedunculopontine nucleus, in the symptoms of the disease.Recent discoveries on the physiology of the pedunculopontine nucleus help explain many of these disorders of arousal in, and point to novel therapeutic avenues for, schizophrenia.

View Article: PubMed Central - PubMed

Affiliation: Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR, United States.

ABSTRACT
Schizophrenia is characterized by major sleep/wake disturbances including increased vigilance and arousal, decreased slow wave sleep, and increased REM sleep drive. Other arousal-related symptoms include sensory gating deficits as exemplified by decreased habituation of the blink reflex. There is also dysregulation of gamma band activity, suggestive of disturbances in a host of arousal-related mechanisms. This review examines the role of the reticular activating system, especially the pedunculopontine nucleus, in the symptoms of the disease. Recent discoveries on the physiology of the pedunculopontine nucleus help explain many of these disorders of arousal in, and point to novel therapeutic avenues for, schizophrenia.

No MeSH data available.


Related in: MedlinePlus