Limits...
Antiviral Activity of Gold/Copper Sulfide Core/Shell Nanoparticles against Human Norovirus Virus-Like Particles.

Broglie JJ, Alston B, Yang C, Ma L, Adcock AF, Chen W, Yang L - PLoS ONE (2015)

Bottom Line: Increasing nanoparticle concentration and/or VLP-NP contact time significantly increased the virucidal efficacy of Au/CuS NPs.Changes to the VLP particle morphology, size, and capsid protein were characterized using dynamic light scattering, transmission electron microscopy, and Western blot analysis.The strategy reported here provides the first reported proof-of-concept Au/CuS NPs-based virucide for rapidly inactivating human norovirus.

View Article: PubMed Central - PubMed

Affiliation: Biomanufacturing Research Institute and Technology Enterprise (BRITE), Department of Pharmaceutical Sciences, North Carolina Central University, Durham, North Carolina, United States of America.

ABSTRACT
Human norovirus is a leading cause of acute gastroenteritis worldwide in a plethora of residential and commercial settings, including restaurants, schools, and hospitals. Methods for easily detecting the virus and for treating and preventing infection are critical to stopping norovirus outbreaks, and inactivation via nanoparticles (NPs) is a more universal and attractive alternative to other physical and chemical approaches. Using norovirus GI.1 (Norwalk) virus-like particles (VLPs) as a model viral system, this study characterized the antiviral activity of Au/CuS core/shell nanoparticles (NPs) against GI.1 VLPs for the rapid inactivation of HuNoV. Inactivation of VLPs (GI.1) by Au/CuS NPs evaluated using an absorbance-based ELISA indicated that treatment with 0.083 μM NPs for 10 min inactivated ~50% VLPs in a 0.37 μg/ml VLP solution and 0.83 μM NPs for 10 min completely inactivated the VLPs. Increasing nanoparticle concentration and/or VLP-NP contact time significantly increased the virucidal efficacy of Au/CuS NPs. Changes to the VLP particle morphology, size, and capsid protein were characterized using dynamic light scattering, transmission electron microscopy, and Western blot analysis. The strategy reported here provides the first reported proof-of-concept Au/CuS NPs-based virucide for rapidly inactivating human norovirus.

No MeSH data available.


Related in: MedlinePlus

Analysis of capsid surface damage.(A) Immunoblotting with normalized signals (relative to lane 4) for lane 1: MW marker; lane 2: untreated VLP solution; lane 3: VLPs treated with 0.083 μM Au/CuS NPs; lane 4: VLPs treated with 0.83 μM Au/CuS NPs; and lane 5: VLPs treated with 1.66 μM Au/CuS NPs. (B) The relative intensities of the band at approximately 32K. (C) the relative intensities of the band of a small fragment of the capsid protein at approximately 22K. All solutions contain an equal volume of 3.7 μg/mL GI.1 VLPs and/or nanoparticles, and all solutions were centrifuged for 5 min. The same letters on the columns indicate no statistical difference, and the different letters indicate a statistical difference.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4608711&req=5

pone.0141050.g003: Analysis of capsid surface damage.(A) Immunoblotting with normalized signals (relative to lane 4) for lane 1: MW marker; lane 2: untreated VLP solution; lane 3: VLPs treated with 0.083 μM Au/CuS NPs; lane 4: VLPs treated with 0.83 μM Au/CuS NPs; and lane 5: VLPs treated with 1.66 μM Au/CuS NPs. (B) The relative intensities of the band at approximately 32K. (C) the relative intensities of the band of a small fragment of the capsid protein at approximately 22K. All solutions contain an equal volume of 3.7 μg/mL GI.1 VLPs and/or nanoparticles, and all solutions were centrifuged for 5 min. The same letters on the columns indicate no statistical difference, and the different letters indicate a statistical difference.

Mentions: We then performed Western blotting to examine protein degradation in VLPs upon Au/CuS NP treatment. Fig 3A shows the immunoblot for VLPs treated with different concentrations of Au/CuS NPs, along with controls. Total proteins were separated by SDS-PAGE and subjected to Western blotting using mAb 3901 primary and fluorescent secondary antibodies. It is known that mAb 3901 can bind to either the full-length (58K) capsid protein or a 32K protein fragment in the P domain [24, 53]. It recognizes a continuous epitope on the C-terminal of the capsid protein, as it was able to bind to the 58K capsid protein and the 32K protein product in Western blot even when the proteins were denatured by boiling prior to analysis [53]. The Western blot here shows that all samples presented a band near 32K, but the relative intensities of the bands obviously varied for the samples treated with different concentrations of NPs. Taking the band intensity of the VLP samples without NP treatment as a base value (taken as 1), the normalized band intensities of the samples treated with different concentrations of NPs are shown in Fig 3B. The results clearly showed that the amount of this 32K protein product reduced significantly as the VLPs were treated with NPs. The treatment with the lowest concentration of NPs (0.83 μM) in the test caused ~86% reduction of this protein, and as the NPs concentration increased to 10 to 20 times higher, it reduced even more and reached a maximum 92–95% reduction. The reduced amount of this protein after NPs treatments suggested that Au/CuS NPs treatment most likely cause degradation (break-down) of this 32K P domain protein.


Antiviral Activity of Gold/Copper Sulfide Core/Shell Nanoparticles against Human Norovirus Virus-Like Particles.

Broglie JJ, Alston B, Yang C, Ma L, Adcock AF, Chen W, Yang L - PLoS ONE (2015)

Analysis of capsid surface damage.(A) Immunoblotting with normalized signals (relative to lane 4) for lane 1: MW marker; lane 2: untreated VLP solution; lane 3: VLPs treated with 0.083 μM Au/CuS NPs; lane 4: VLPs treated with 0.83 μM Au/CuS NPs; and lane 5: VLPs treated with 1.66 μM Au/CuS NPs. (B) The relative intensities of the band at approximately 32K. (C) the relative intensities of the band of a small fragment of the capsid protein at approximately 22K. All solutions contain an equal volume of 3.7 μg/mL GI.1 VLPs and/or nanoparticles, and all solutions were centrifuged for 5 min. The same letters on the columns indicate no statistical difference, and the different letters indicate a statistical difference.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4608711&req=5

pone.0141050.g003: Analysis of capsid surface damage.(A) Immunoblotting with normalized signals (relative to lane 4) for lane 1: MW marker; lane 2: untreated VLP solution; lane 3: VLPs treated with 0.083 μM Au/CuS NPs; lane 4: VLPs treated with 0.83 μM Au/CuS NPs; and lane 5: VLPs treated with 1.66 μM Au/CuS NPs. (B) The relative intensities of the band at approximately 32K. (C) the relative intensities of the band of a small fragment of the capsid protein at approximately 22K. All solutions contain an equal volume of 3.7 μg/mL GI.1 VLPs and/or nanoparticles, and all solutions were centrifuged for 5 min. The same letters on the columns indicate no statistical difference, and the different letters indicate a statistical difference.
Mentions: We then performed Western blotting to examine protein degradation in VLPs upon Au/CuS NP treatment. Fig 3A shows the immunoblot for VLPs treated with different concentrations of Au/CuS NPs, along with controls. Total proteins were separated by SDS-PAGE and subjected to Western blotting using mAb 3901 primary and fluorescent secondary antibodies. It is known that mAb 3901 can bind to either the full-length (58K) capsid protein or a 32K protein fragment in the P domain [24, 53]. It recognizes a continuous epitope on the C-terminal of the capsid protein, as it was able to bind to the 58K capsid protein and the 32K protein product in Western blot even when the proteins were denatured by boiling prior to analysis [53]. The Western blot here shows that all samples presented a band near 32K, but the relative intensities of the bands obviously varied for the samples treated with different concentrations of NPs. Taking the band intensity of the VLP samples without NP treatment as a base value (taken as 1), the normalized band intensities of the samples treated with different concentrations of NPs are shown in Fig 3B. The results clearly showed that the amount of this 32K protein product reduced significantly as the VLPs were treated with NPs. The treatment with the lowest concentration of NPs (0.83 μM) in the test caused ~86% reduction of this protein, and as the NPs concentration increased to 10 to 20 times higher, it reduced even more and reached a maximum 92–95% reduction. The reduced amount of this protein after NPs treatments suggested that Au/CuS NPs treatment most likely cause degradation (break-down) of this 32K P domain protein.

Bottom Line: Increasing nanoparticle concentration and/or VLP-NP contact time significantly increased the virucidal efficacy of Au/CuS NPs.Changes to the VLP particle morphology, size, and capsid protein were characterized using dynamic light scattering, transmission electron microscopy, and Western blot analysis.The strategy reported here provides the first reported proof-of-concept Au/CuS NPs-based virucide for rapidly inactivating human norovirus.

View Article: PubMed Central - PubMed

Affiliation: Biomanufacturing Research Institute and Technology Enterprise (BRITE), Department of Pharmaceutical Sciences, North Carolina Central University, Durham, North Carolina, United States of America.

ABSTRACT
Human norovirus is a leading cause of acute gastroenteritis worldwide in a plethora of residential and commercial settings, including restaurants, schools, and hospitals. Methods for easily detecting the virus and for treating and preventing infection are critical to stopping norovirus outbreaks, and inactivation via nanoparticles (NPs) is a more universal and attractive alternative to other physical and chemical approaches. Using norovirus GI.1 (Norwalk) virus-like particles (VLPs) as a model viral system, this study characterized the antiviral activity of Au/CuS core/shell nanoparticles (NPs) against GI.1 VLPs for the rapid inactivation of HuNoV. Inactivation of VLPs (GI.1) by Au/CuS NPs evaluated using an absorbance-based ELISA indicated that treatment with 0.083 μM NPs for 10 min inactivated ~50% VLPs in a 0.37 μg/ml VLP solution and 0.83 μM NPs for 10 min completely inactivated the VLPs. Increasing nanoparticle concentration and/or VLP-NP contact time significantly increased the virucidal efficacy of Au/CuS NPs. Changes to the VLP particle morphology, size, and capsid protein were characterized using dynamic light scattering, transmission electron microscopy, and Western blot analysis. The strategy reported here provides the first reported proof-of-concept Au/CuS NPs-based virucide for rapidly inactivating human norovirus.

No MeSH data available.


Related in: MedlinePlus