Limits...
Antiviral Activity of Gold/Copper Sulfide Core/Shell Nanoparticles against Human Norovirus Virus-Like Particles.

Broglie JJ, Alston B, Yang C, Ma L, Adcock AF, Chen W, Yang L - PLoS ONE (2015)

Bottom Line: Increasing nanoparticle concentration and/or VLP-NP contact time significantly increased the virucidal efficacy of Au/CuS NPs.Changes to the VLP particle morphology, size, and capsid protein were characterized using dynamic light scattering, transmission electron microscopy, and Western blot analysis.The strategy reported here provides the first reported proof-of-concept Au/CuS NPs-based virucide for rapidly inactivating human norovirus.

View Article: PubMed Central - PubMed

Affiliation: Biomanufacturing Research Institute and Technology Enterprise (BRITE), Department of Pharmaceutical Sciences, North Carolina Central University, Durham, North Carolina, United States of America.

ABSTRACT
Human norovirus is a leading cause of acute gastroenteritis worldwide in a plethora of residential and commercial settings, including restaurants, schools, and hospitals. Methods for easily detecting the virus and for treating and preventing infection are critical to stopping norovirus outbreaks, and inactivation via nanoparticles (NPs) is a more universal and attractive alternative to other physical and chemical approaches. Using norovirus GI.1 (Norwalk) virus-like particles (VLPs) as a model viral system, this study characterized the antiviral activity of Au/CuS core/shell nanoparticles (NPs) against GI.1 VLPs for the rapid inactivation of HuNoV. Inactivation of VLPs (GI.1) by Au/CuS NPs evaluated using an absorbance-based ELISA indicated that treatment with 0.083 μM NPs for 10 min inactivated ~50% VLPs in a 0.37 μg/ml VLP solution and 0.83 μM NPs for 10 min completely inactivated the VLPs. Increasing nanoparticle concentration and/or VLP-NP contact time significantly increased the virucidal efficacy of Au/CuS NPs. Changes to the VLP particle morphology, size, and capsid protein were characterized using dynamic light scattering, transmission electron microscopy, and Western blot analysis. The strategy reported here provides the first reported proof-of-concept Au/CuS NPs-based virucide for rapidly inactivating human norovirus.

No MeSH data available.


Related in: MedlinePlus

Effect of Au/CuS NP concentration on VLP solution absorbance.Absorbance was measured using the three-hour ELISA, and all solutions contained an equal volume of NPs. Reduced absorbance indicates structural damage to the capsid surface proteins and associated VLP inactivation. In each series, the same letters on the columns indicate no statistically difference, and the different letters indicate statistically different.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4608711&req=5

pone.0141050.g001: Effect of Au/CuS NP concentration on VLP solution absorbance.Absorbance was measured using the three-hour ELISA, and all solutions contained an equal volume of NPs. Reduced absorbance indicates structural damage to the capsid surface proteins and associated VLP inactivation. In each series, the same letters on the columns indicate no statistically difference, and the different letters indicate statistically different.

Mentions: We first examined the effect of NPs treatment on VLPs using the ELISA method in which the binding capacity of VLPs to the monoclonal anti-GI.1 VLP antibody (mAb 3901) was evaluated. Fig 1 shows the absorbance signal reductions after VLPs (at two concentration levels: 0.37 and 3.7 μg/mL) were treated with Au/CuS NPs at final concentrations ranging from 0.0083 μM to 1.66 μM for 10 min. For the 0.37 μg/mL VLPs, compared to the untreated control, the inactivation effect was apparent at the treatment with 0.083 μM Au/CuS NPs. Also, there was a marked increase in antiviral activity between 0.083 μM and 0.415 μM, and the VLPs appeared to be completely inactivated at treatments with 0.83 μM and higher NPs. For the denser VLPs at 3.7 μg/mL, treatment with higher concentration of NPs (at 0.415 μM) exhibited a marked antiviral activity, but there were reportable absorbance values at the treatments across the entire tested Au/CuS NP concentration range. This indicates that only partial inactivation was achieved even at high Au/CuS NPs concentrations (up to 1.66 μM).


Antiviral Activity of Gold/Copper Sulfide Core/Shell Nanoparticles against Human Norovirus Virus-Like Particles.

Broglie JJ, Alston B, Yang C, Ma L, Adcock AF, Chen W, Yang L - PLoS ONE (2015)

Effect of Au/CuS NP concentration on VLP solution absorbance.Absorbance was measured using the three-hour ELISA, and all solutions contained an equal volume of NPs. Reduced absorbance indicates structural damage to the capsid surface proteins and associated VLP inactivation. In each series, the same letters on the columns indicate no statistically difference, and the different letters indicate statistically different.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4608711&req=5

pone.0141050.g001: Effect of Au/CuS NP concentration on VLP solution absorbance.Absorbance was measured using the three-hour ELISA, and all solutions contained an equal volume of NPs. Reduced absorbance indicates structural damage to the capsid surface proteins and associated VLP inactivation. In each series, the same letters on the columns indicate no statistically difference, and the different letters indicate statistically different.
Mentions: We first examined the effect of NPs treatment on VLPs using the ELISA method in which the binding capacity of VLPs to the monoclonal anti-GI.1 VLP antibody (mAb 3901) was evaluated. Fig 1 shows the absorbance signal reductions after VLPs (at two concentration levels: 0.37 and 3.7 μg/mL) were treated with Au/CuS NPs at final concentrations ranging from 0.0083 μM to 1.66 μM for 10 min. For the 0.37 μg/mL VLPs, compared to the untreated control, the inactivation effect was apparent at the treatment with 0.083 μM Au/CuS NPs. Also, there was a marked increase in antiviral activity between 0.083 μM and 0.415 μM, and the VLPs appeared to be completely inactivated at treatments with 0.83 μM and higher NPs. For the denser VLPs at 3.7 μg/mL, treatment with higher concentration of NPs (at 0.415 μM) exhibited a marked antiviral activity, but there were reportable absorbance values at the treatments across the entire tested Au/CuS NP concentration range. This indicates that only partial inactivation was achieved even at high Au/CuS NPs concentrations (up to 1.66 μM).

Bottom Line: Increasing nanoparticle concentration and/or VLP-NP contact time significantly increased the virucidal efficacy of Au/CuS NPs.Changes to the VLP particle morphology, size, and capsid protein were characterized using dynamic light scattering, transmission electron microscopy, and Western blot analysis.The strategy reported here provides the first reported proof-of-concept Au/CuS NPs-based virucide for rapidly inactivating human norovirus.

View Article: PubMed Central - PubMed

Affiliation: Biomanufacturing Research Institute and Technology Enterprise (BRITE), Department of Pharmaceutical Sciences, North Carolina Central University, Durham, North Carolina, United States of America.

ABSTRACT
Human norovirus is a leading cause of acute gastroenteritis worldwide in a plethora of residential and commercial settings, including restaurants, schools, and hospitals. Methods for easily detecting the virus and for treating and preventing infection are critical to stopping norovirus outbreaks, and inactivation via nanoparticles (NPs) is a more universal and attractive alternative to other physical and chemical approaches. Using norovirus GI.1 (Norwalk) virus-like particles (VLPs) as a model viral system, this study characterized the antiviral activity of Au/CuS core/shell nanoparticles (NPs) against GI.1 VLPs for the rapid inactivation of HuNoV. Inactivation of VLPs (GI.1) by Au/CuS NPs evaluated using an absorbance-based ELISA indicated that treatment with 0.083 μM NPs for 10 min inactivated ~50% VLPs in a 0.37 μg/ml VLP solution and 0.83 μM NPs for 10 min completely inactivated the VLPs. Increasing nanoparticle concentration and/or VLP-NP contact time significantly increased the virucidal efficacy of Au/CuS NPs. Changes to the VLP particle morphology, size, and capsid protein were characterized using dynamic light scattering, transmission electron microscopy, and Western blot analysis. The strategy reported here provides the first reported proof-of-concept Au/CuS NPs-based virucide for rapidly inactivating human norovirus.

No MeSH data available.


Related in: MedlinePlus