Limits...
Para amino benzoic acid-derived self-assembled biocompatible nanoparticles for efficient delivery of siRNA.

Reddy TL, Krishnarao PS, Rao GK, Bhimireddy E, Venkateswarlu P, Mohapatra DK, Yadav JS, Bhadra U, Bhadra MP - Int J Nanomedicine (2015)

Bottom Line: A number of diseases can result from abnormal gene expression.Our findings indicated high gene transfection efficiency.These biocompatible nanoparticles allow targeted delivery of siRNA, providing an efficient vehicle for gene delivery.

View Article: PubMed Central - PubMed

Affiliation: Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India ; Academy of Scientific and Innovative Research, New Delhi, India.

ABSTRACT
A number of diseases can result from abnormal gene expression. One of the approaches for treating such diseases is gene therapy to inhibit expression of a particular gene in a specific cell population by RNA interference. Use of efficient delivery vehicles increases the safety and success of gene therapy. Here we report the development of functionalized biocompatible fluorescent nanoparticles from para amino benzoic acid nanoparticles for efficient delivery of short interfering RNA (siRNA). These nanoparticles were non-toxic and did not interfere with progression of the cell cycle. The intrinsic fluorescent nature of these nanoparticles allows easy tracking and an opportunity for diagnostic applications. Human Bcl-2 siRNA was complexed with these nanoparticles to inhibit expression in cells at both the transcriptional and translational levels. Our findings indicated high gene transfection efficiency. These biocompatible nanoparticles allow targeted delivery of siRNA, providing an efficient vehicle for gene delivery.

No MeSH data available.


Related in: MedlinePlus

Synthesis of biocompatible functionalized nanoparticle for siRNA conjugation.Abbreviation: siRNA, short interfering RNA.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4608593&req=5

f1-ijn-10-6411: Synthesis of biocompatible functionalized nanoparticle for siRNA conjugation.Abbreviation: siRNA, short interfering RNA.

Mentions: We synthesized the target designed molecule 4-decanamido-N-(6-(2-guanidinoacetamido)pyridin-2-yl)benzamide hydrochloride and its analogs starting from commercially available PABA (1). Our method of synthesis involved conversion of PABA (1) to its methyl ester using acetyl chloride in methanol,25 and the amine hydrochloride (2) was coupled with acids of various chain lengths (C10, C12, C14, C16, C18, and C18 unsaturated) using EDCI and HOBt in dichloromethane to produce compound (3a)26 (C10) in 92% yield over two steps (Figure 1). The methyl ester on subsequent hydrolysis with LiOH yielded compound (4a).27 The resulting acid was coupled with 2, 6-diaminopyridine using EDCI and HOBt in dichloromethane to obtain compound (5a)28 in 91% yield over two steps. The free amine was coupled with N-Boc-protected glycine using N,N′-dicyclohexylcarbodiimide and N,N-dimethylpyridin-4-amine in dichloromethane to obtain Boc-protected compound (6a)29 in 89% yield. The Boc group was deprotected using trifluoroacetic acid and the amine was coupled with N,N-bis-tert-butyloxycarbonyl-S-methyl-isothiourea and DIPEA as a base to obtain compound (7a)30,31 in 68% yield. Finally, the designed molecule 4-decanamido-N-(6-(2-guanidinoacetamido) pyridin-2-yl) benzamide hydrochloride (8a) was obtained in 73% yield by deprotection of the Boc groups with bubbling HCl gas in methanol (Figure 1). All compounds were subjected to self-assembly of NP formation. In each case, to obtain a self-assembled nanostructure, 1 mg of compound (8a–f) was added to 2 mL of methanol and heated at 60°C until it dissolved completely. Next, 2 mL of deionized water was mixed slowly at the same temperature to obtain a pure white solution, which on slow cooling at room temperature formed cotton dust-like white aggregates. These aggregates were isolated by centrifugation at 4,500 rpm for 20 minutes, followed by overnight drying at 60°C to afford 0.5 mg of final nanomaterial.24


Para amino benzoic acid-derived self-assembled biocompatible nanoparticles for efficient delivery of siRNA.

Reddy TL, Krishnarao PS, Rao GK, Bhimireddy E, Venkateswarlu P, Mohapatra DK, Yadav JS, Bhadra U, Bhadra MP - Int J Nanomedicine (2015)

Synthesis of biocompatible functionalized nanoparticle for siRNA conjugation.Abbreviation: siRNA, short interfering RNA.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4608593&req=5

f1-ijn-10-6411: Synthesis of biocompatible functionalized nanoparticle for siRNA conjugation.Abbreviation: siRNA, short interfering RNA.
Mentions: We synthesized the target designed molecule 4-decanamido-N-(6-(2-guanidinoacetamido)pyridin-2-yl)benzamide hydrochloride and its analogs starting from commercially available PABA (1). Our method of synthesis involved conversion of PABA (1) to its methyl ester using acetyl chloride in methanol,25 and the amine hydrochloride (2) was coupled with acids of various chain lengths (C10, C12, C14, C16, C18, and C18 unsaturated) using EDCI and HOBt in dichloromethane to produce compound (3a)26 (C10) in 92% yield over two steps (Figure 1). The methyl ester on subsequent hydrolysis with LiOH yielded compound (4a).27 The resulting acid was coupled with 2, 6-diaminopyridine using EDCI and HOBt in dichloromethane to obtain compound (5a)28 in 91% yield over two steps. The free amine was coupled with N-Boc-protected glycine using N,N′-dicyclohexylcarbodiimide and N,N-dimethylpyridin-4-amine in dichloromethane to obtain Boc-protected compound (6a)29 in 89% yield. The Boc group was deprotected using trifluoroacetic acid and the amine was coupled with N,N-bis-tert-butyloxycarbonyl-S-methyl-isothiourea and DIPEA as a base to obtain compound (7a)30,31 in 68% yield. Finally, the designed molecule 4-decanamido-N-(6-(2-guanidinoacetamido) pyridin-2-yl) benzamide hydrochloride (8a) was obtained in 73% yield by deprotection of the Boc groups with bubbling HCl gas in methanol (Figure 1). All compounds were subjected to self-assembly of NP formation. In each case, to obtain a self-assembled nanostructure, 1 mg of compound (8a–f) was added to 2 mL of methanol and heated at 60°C until it dissolved completely. Next, 2 mL of deionized water was mixed slowly at the same temperature to obtain a pure white solution, which on slow cooling at room temperature formed cotton dust-like white aggregates. These aggregates were isolated by centrifugation at 4,500 rpm for 20 minutes, followed by overnight drying at 60°C to afford 0.5 mg of final nanomaterial.24

Bottom Line: A number of diseases can result from abnormal gene expression.Our findings indicated high gene transfection efficiency.These biocompatible nanoparticles allow targeted delivery of siRNA, providing an efficient vehicle for gene delivery.

View Article: PubMed Central - PubMed

Affiliation: Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India ; Academy of Scientific and Innovative Research, New Delhi, India.

ABSTRACT
A number of diseases can result from abnormal gene expression. One of the approaches for treating such diseases is gene therapy to inhibit expression of a particular gene in a specific cell population by RNA interference. Use of efficient delivery vehicles increases the safety and success of gene therapy. Here we report the development of functionalized biocompatible fluorescent nanoparticles from para amino benzoic acid nanoparticles for efficient delivery of short interfering RNA (siRNA). These nanoparticles were non-toxic and did not interfere with progression of the cell cycle. The intrinsic fluorescent nature of these nanoparticles allows easy tracking and an opportunity for diagnostic applications. Human Bcl-2 siRNA was complexed with these nanoparticles to inhibit expression in cells at both the transcriptional and translational levels. Our findings indicated high gene transfection efficiency. These biocompatible nanoparticles allow targeted delivery of siRNA, providing an efficient vehicle for gene delivery.

No MeSH data available.


Related in: MedlinePlus