Limits...
A Focus on Triazolium as a Multipurpose Molecular Station for pH-Sensitive Interlocked Crown-Ether-Based Molecular Machines.

Coutrot F - ChemistryOpen (2015)

Bottom Line: This can result in variations of physical or chemical properties.It also served as a molecular barrier in order to lock interlaced structures or to compartmentalize interlocked molecular machines.This review describes the recently reported examples of pH-sensitive triazolium-containing molecular machines and their peculiar features.

View Article: PubMed Central - PubMed

Affiliation: Supramolecular Machines and Architectures Team, Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 Cnrs, Faculté des Sciences, Université Montpellier, ENSCM Bâtiment Chimie (17), 3ème étage, Place Eugène Bataillon, case courrier 1706, 34095, Montpellier cedex 5, France.

ABSTRACT
The control of motion of one element with respect to others in an interlocked architecture allows for different co-conformational states of a molecule. This can result in variations of physical or chemical properties. The increase of knowledge in the field of molecular interactions led to the design, the synthesis, and the study of various systems of molecular machinery in a wide range of interlocked architectures. In this field, the discovery of new molecular stations for macrocycles is an attractive way to conceive original molecular machines. In the very recent past, the triazolium moiety proved to interact with crown ethers in interlocked molecules, so that it could be used as an ideal molecular station. It also served as a molecular barrier in order to lock interlaced structures or to compartmentalize interlocked molecular machines. This review describes the recently reported examples of pH-sensitive triazolium-containing molecular machines and their peculiar features.

No MeSH data available.


Mimicking the wing-flapping motion of a butterfly using a triazolium-containing pentiptycene bis(crown ether)-based [2](2)rotaxane.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4608521&req=5

sch03: Mimicking the wing-flapping motion of a butterfly using a triazolium-containing pentiptycene bis(crown ether)-based [2](2)rotaxane.

Mentions: Another example of “chemical design” was reported by Chen et al. in 2014.18 Inspired by smart bionic machines, they proposed the synthesis, through CuAAC click reaction followed by methylation of the triazoles, of a [2](2)rotaxane containing a pentiptycene-derived bis(crown ether), two ammonium stations, and two N-methyltriazolium stations. The pH-sensitive molecular machinery that is inherent to this doubly-threaded molecule mimicks the flapping motion of the wings of a butterfly (Scheme 3).


A Focus on Triazolium as a Multipurpose Molecular Station for pH-Sensitive Interlocked Crown-Ether-Based Molecular Machines.

Coutrot F - ChemistryOpen (2015)

Mimicking the wing-flapping motion of a butterfly using a triazolium-containing pentiptycene bis(crown ether)-based [2](2)rotaxane.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4608521&req=5

sch03: Mimicking the wing-flapping motion of a butterfly using a triazolium-containing pentiptycene bis(crown ether)-based [2](2)rotaxane.
Mentions: Another example of “chemical design” was reported by Chen et al. in 2014.18 Inspired by smart bionic machines, they proposed the synthesis, through CuAAC click reaction followed by methylation of the triazoles, of a [2](2)rotaxane containing a pentiptycene-derived bis(crown ether), two ammonium stations, and two N-methyltriazolium stations. The pH-sensitive molecular machinery that is inherent to this doubly-threaded molecule mimicks the flapping motion of the wings of a butterfly (Scheme 3).

Bottom Line: This can result in variations of physical or chemical properties.It also served as a molecular barrier in order to lock interlaced structures or to compartmentalize interlocked molecular machines.This review describes the recently reported examples of pH-sensitive triazolium-containing molecular machines and their peculiar features.

View Article: PubMed Central - PubMed

Affiliation: Supramolecular Machines and Architectures Team, Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 Cnrs, Faculté des Sciences, Université Montpellier, ENSCM Bâtiment Chimie (17), 3ème étage, Place Eugène Bataillon, case courrier 1706, 34095, Montpellier cedex 5, France.

ABSTRACT
The control of motion of one element with respect to others in an interlocked architecture allows for different co-conformational states of a molecule. This can result in variations of physical or chemical properties. The increase of knowledge in the field of molecular interactions led to the design, the synthesis, and the study of various systems of molecular machinery in a wide range of interlocked architectures. In this field, the discovery of new molecular stations for macrocycles is an attractive way to conceive original molecular machines. In the very recent past, the triazolium moiety proved to interact with crown ethers in interlocked molecules, so that it could be used as an ideal molecular station. It also served as a molecular barrier in order to lock interlaced structures or to compartmentalize interlocked molecular machines. This review describes the recently reported examples of pH-sensitive triazolium-containing molecular machines and their peculiar features.

No MeSH data available.