Limits...
Influence of Hypoxic Interval Training and Hyperoxic Recovery on Muscle Activation and Oxygenation in Connection with Double-Poling Exercise.

Zinner C, Hauser A, Born DP, Wehrlin JP, Holmberg HC, Sperlich B - PLoS ONE (2015)

Bottom Line: In the case of HoHo the athletes' Pmean declined from the first to the third interval (P < 0.05), whereas Pmean was unaltered under the HoHOX, NoHOX and NoNo conditions.We conclude that the less pronounced decline in Pmean during 3 x 3-min double-poling sprints in normoxia and hypoxia with hyperoxic recovery is not related to changes in muscle activity or oxygenation.Moreover, we conclude that hyperoxia (FiO2 = 1.00) used in conjunction with hypoxic or normoxic work intervals may serve as an effective aid when inhaled during the subsequent recovery intervals.

View Article: PubMed Central - PubMed

Affiliation: Department of Sport Science, Julius-Maximilians-University Würzburg, Würzburg, Germany; Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden.

ABSTRACT
Here, we evaluated the influence of breathing oxygen at different partial pressures during recovery from exercise on performance at sea-level and a simulated altitude of 1800 m, as reflected in activation of different upper body muscles, and oxygenation of the m. triceps brachii. Ten well-trained, male endurance athletes (25.3±4.1 yrs; 179.2±4.5 cm; 74.2±3.4 kg) performed four test trials, each involving three 3-min sessions on a double-poling ergometer with 3-min intervals of recovery. One trial was conducted entirely under normoxic (No) and another under hypoxic conditions (Ho; FiO2 = 0.165). In the third and fourth trials, the exercise was performed in normoxia and hypoxia, respectively, with hyperoxic recovery (HOX; FiO2 = 1.00) in both cases. Arterial hemoglobin saturation was higher under the two HOX conditions than without HOX (p<0.05). Integrated muscle electrical activity was not influenced by the oxygen content (best d = 0.51). Furthermore, the only difference in tissue saturation index measured via near-infrared spectroscopy observed was between the recovery periods during the NoNo and HoHOX interventions (P<0.05, d = 0.93). In the case of HoHo the athletes' Pmean declined from the first to the third interval (P < 0.05), whereas Pmean was unaltered under the HoHOX, NoHOX and NoNo conditions. We conclude that the less pronounced decline in Pmean during 3 x 3-min double-poling sprints in normoxia and hypoxia with hyperoxic recovery is not related to changes in muscle activity or oxygenation. Moreover, we conclude that hyperoxia (FiO2 = 1.00) used in conjunction with hypoxic or normoxic work intervals may serve as an effective aid when inhaled during the subsequent recovery intervals.

No MeSH data available.


Related in: MedlinePlus

Mean power output during the three intervals under all four conditions.* indicates P<0.05 in comparison to interval #1. NoNo: normoxia with normoxic recovery; NoHOX: normoxia with hyperoxic recovery; HoHo: hypoxia with hypoxic recovery; HoHOX: hypoxia with hyperoxic recovery.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4607305&req=5

pone.0140616.g001: Mean power output during the three intervals under all four conditions.* indicates P<0.05 in comparison to interval #1. NoNo: normoxia with normoxic recovery; NoHOX: normoxia with hyperoxic recovery; HoHo: hypoxia with hypoxic recovery; HoHOX: hypoxia with hyperoxic recovery.

Mentions: For analysis of the lactate concentration, 20 μL blood was collected from the left earlobe into a capillary tube (Eppendorf AG, Hamburg, Germany) both before and after the 10-min warm-up period, as well as immediately and 2.5 min after the 3-min DP sprints (Fig 1). For analyses of pH and blood gases (PO2, PCO2, SO2), 120 μL capillary blood was collected from the right earlobe at these same time-points, when the participants were also asked to rate their perceived exertion on the 6–20-point Borg scale. Blood lactate was assayed with an amperometric-enzymatic procedure using the Ebio Plus system (Eppendorf AG, Hamburg, Germany) and blood gases with the AVL Omni 3 system (Roche Ltd, Basel, Switzerland), in duplicate in all cases, with the mean being used for statistical analysis. Under our laboratory conditions, the coefficient of variation for repeated measurements of lactate concentration is routinely 1.2% at a concentration of 12 mmol/L. For arterial oxygen saturation and partial pressure, the corresponding coefficients of variation are 3.2 and 3.6%, respectively.


Influence of Hypoxic Interval Training and Hyperoxic Recovery on Muscle Activation and Oxygenation in Connection with Double-Poling Exercise.

Zinner C, Hauser A, Born DP, Wehrlin JP, Holmberg HC, Sperlich B - PLoS ONE (2015)

Mean power output during the three intervals under all four conditions.* indicates P<0.05 in comparison to interval #1. NoNo: normoxia with normoxic recovery; NoHOX: normoxia with hyperoxic recovery; HoHo: hypoxia with hypoxic recovery; HoHOX: hypoxia with hyperoxic recovery.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4607305&req=5

pone.0140616.g001: Mean power output during the three intervals under all four conditions.* indicates P<0.05 in comparison to interval #1. NoNo: normoxia with normoxic recovery; NoHOX: normoxia with hyperoxic recovery; HoHo: hypoxia with hypoxic recovery; HoHOX: hypoxia with hyperoxic recovery.
Mentions: For analysis of the lactate concentration, 20 μL blood was collected from the left earlobe into a capillary tube (Eppendorf AG, Hamburg, Germany) both before and after the 10-min warm-up period, as well as immediately and 2.5 min after the 3-min DP sprints (Fig 1). For analyses of pH and blood gases (PO2, PCO2, SO2), 120 μL capillary blood was collected from the right earlobe at these same time-points, when the participants were also asked to rate their perceived exertion on the 6–20-point Borg scale. Blood lactate was assayed with an amperometric-enzymatic procedure using the Ebio Plus system (Eppendorf AG, Hamburg, Germany) and blood gases with the AVL Omni 3 system (Roche Ltd, Basel, Switzerland), in duplicate in all cases, with the mean being used for statistical analysis. Under our laboratory conditions, the coefficient of variation for repeated measurements of lactate concentration is routinely 1.2% at a concentration of 12 mmol/L. For arterial oxygen saturation and partial pressure, the corresponding coefficients of variation are 3.2 and 3.6%, respectively.

Bottom Line: In the case of HoHo the athletes' Pmean declined from the first to the third interval (P < 0.05), whereas Pmean was unaltered under the HoHOX, NoHOX and NoNo conditions.We conclude that the less pronounced decline in Pmean during 3 x 3-min double-poling sprints in normoxia and hypoxia with hyperoxic recovery is not related to changes in muscle activity or oxygenation.Moreover, we conclude that hyperoxia (FiO2 = 1.00) used in conjunction with hypoxic or normoxic work intervals may serve as an effective aid when inhaled during the subsequent recovery intervals.

View Article: PubMed Central - PubMed

Affiliation: Department of Sport Science, Julius-Maximilians-University Würzburg, Würzburg, Germany; Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden.

ABSTRACT
Here, we evaluated the influence of breathing oxygen at different partial pressures during recovery from exercise on performance at sea-level and a simulated altitude of 1800 m, as reflected in activation of different upper body muscles, and oxygenation of the m. triceps brachii. Ten well-trained, male endurance athletes (25.3±4.1 yrs; 179.2±4.5 cm; 74.2±3.4 kg) performed four test trials, each involving three 3-min sessions on a double-poling ergometer with 3-min intervals of recovery. One trial was conducted entirely under normoxic (No) and another under hypoxic conditions (Ho; FiO2 = 0.165). In the third and fourth trials, the exercise was performed in normoxia and hypoxia, respectively, with hyperoxic recovery (HOX; FiO2 = 1.00) in both cases. Arterial hemoglobin saturation was higher under the two HOX conditions than without HOX (p<0.05). Integrated muscle electrical activity was not influenced by the oxygen content (best d = 0.51). Furthermore, the only difference in tissue saturation index measured via near-infrared spectroscopy observed was between the recovery periods during the NoNo and HoHOX interventions (P<0.05, d = 0.93). In the case of HoHo the athletes' Pmean declined from the first to the third interval (P < 0.05), whereas Pmean was unaltered under the HoHOX, NoHOX and NoNo conditions. We conclude that the less pronounced decline in Pmean during 3 x 3-min double-poling sprints in normoxia and hypoxia with hyperoxic recovery is not related to changes in muscle activity or oxygenation. Moreover, we conclude that hyperoxia (FiO2 = 1.00) used in conjunction with hypoxic or normoxic work intervals may serve as an effective aid when inhaled during the subsequent recovery intervals.

No MeSH data available.


Related in: MedlinePlus