Limits...
Microplastics in Arctic polar waters: the first reported values of particles in surface and sub-surface samples.

Lusher AL, Tirelli V, O'Connor I, Officer R - Sci Rep (2015)

Bottom Line: Identifying patterns of microplastic distribution will benefit an understanding of the scale of their potential effect on the environment and organisms.Microplastics were found in surface (top 16 cm) and sub-surface (6 m depth) samples using two independent techniques.Further research is required to understand the effects of microplastic-biota interaction within this productive environment.

View Article: PubMed Central - PubMed

Affiliation: Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, Dublin Road, Galway, Ireland.

ABSTRACT
Plastic, as a form of marine litter, is found in varying quantities and sizes around the globe from surface waters to deep-sea sediments. Identifying patterns of microplastic distribution will benefit an understanding of the scale of their potential effect on the environment and organisms. As sea ice extent is reducing in the Arctic, heightened shipping and fishing activity may increase marine pollution in the area. Microplastics may enter the region following ocean transport and local input, although baseline contamination measurements are still required. Here we present the first study of microplastics in Arctic waters, south and southwest of Svalbard, Norway. Microplastics were found in surface (top 16 cm) and sub-surface (6 m depth) samples using two independent techniques. Origins and pathways bringing microplastic to the Arctic remain unclear. Particle composition (95% fibres) suggests they may either result from the breakdown of larger items (transported over large distances by prevailing currents, or derived from local vessel activity), or input in sewage and wastewater from coastal areas. Concurrent observations of high zooplankton abundance suggest a high probability for marine biota to encounter microplastics and a potential for trophic interactions. Further research is required to understand the effects of microplastic-biota interaction within this productive environment.

No MeSH data available.


Map of sample locations during research cruise (created using ArcGIS) and example microplastic pictures.(a) Location of survey area, (b) surface sampling positions and microplastic abundance per m3, (c) sub-surface sampling positions and microplastic abundance per m3, (d) plastic fragment, (e) plastic film, (f) plastic fibre. SST source satellite data from: JPL OurOcean Project. 2010. GHRSST Level 4 G1SST Global Foundation Sea Surface Temperature Analysis. Ver. 1. PO.DAAC, CA, USA. Dataset accessed [2015-08-03] at http://dx.doi.org/10.5067/GHG1S-4FP01.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4597356&req=5

f1: Map of sample locations during research cruise (created using ArcGIS) and example microplastic pictures.(a) Location of survey area, (b) surface sampling positions and microplastic abundance per m3, (c) sub-surface sampling positions and microplastic abundance per m3, (d) plastic fragment, (e) plastic film, (f) plastic fibre. SST source satellite data from: JPL OurOcean Project. 2010. GHRSST Level 4 G1SST Global Foundation Sea Surface Temperature Analysis. Ver. 1. PO.DAAC, CA, USA. Dataset accessed [2015-08-03] at http://dx.doi.org/10.5067/GHG1S-4FP01.

Mentions: Surface samples were collected in the top 16 cm of seawater using a manta net. Microplastics were found in 20 out of 21 (95%) samples (Fig. 1b). Microplastic abundance ranged between 0 and 1.31 particles per m3, and averaged 0.34 (±0.31 SD) particles per m3. The single sample which was free from microplastics was found furthest offshore. Distances covered by the manta net tows ranged from 0.55 to 1.85 km. Mean zooplankton abundance in surface samples was 623.65 individuals per m3 (±838.11 SD). There was no significant correlation between zooplankton abundance and microplastic abundance (Pearson’s, p = 0.20).


Microplastics in Arctic polar waters: the first reported values of particles in surface and sub-surface samples.

Lusher AL, Tirelli V, O'Connor I, Officer R - Sci Rep (2015)

Map of sample locations during research cruise (created using ArcGIS) and example microplastic pictures.(a) Location of survey area, (b) surface sampling positions and microplastic abundance per m3, (c) sub-surface sampling positions and microplastic abundance per m3, (d) plastic fragment, (e) plastic film, (f) plastic fibre. SST source satellite data from: JPL OurOcean Project. 2010. GHRSST Level 4 G1SST Global Foundation Sea Surface Temperature Analysis. Ver. 1. PO.DAAC, CA, USA. Dataset accessed [2015-08-03] at http://dx.doi.org/10.5067/GHG1S-4FP01.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4597356&req=5

f1: Map of sample locations during research cruise (created using ArcGIS) and example microplastic pictures.(a) Location of survey area, (b) surface sampling positions and microplastic abundance per m3, (c) sub-surface sampling positions and microplastic abundance per m3, (d) plastic fragment, (e) plastic film, (f) plastic fibre. SST source satellite data from: JPL OurOcean Project. 2010. GHRSST Level 4 G1SST Global Foundation Sea Surface Temperature Analysis. Ver. 1. PO.DAAC, CA, USA. Dataset accessed [2015-08-03] at http://dx.doi.org/10.5067/GHG1S-4FP01.
Mentions: Surface samples were collected in the top 16 cm of seawater using a manta net. Microplastics were found in 20 out of 21 (95%) samples (Fig. 1b). Microplastic abundance ranged between 0 and 1.31 particles per m3, and averaged 0.34 (±0.31 SD) particles per m3. The single sample which was free from microplastics was found furthest offshore. Distances covered by the manta net tows ranged from 0.55 to 1.85 km. Mean zooplankton abundance in surface samples was 623.65 individuals per m3 (±838.11 SD). There was no significant correlation between zooplankton abundance and microplastic abundance (Pearson’s, p = 0.20).

Bottom Line: Identifying patterns of microplastic distribution will benefit an understanding of the scale of their potential effect on the environment and organisms.Microplastics were found in surface (top 16 cm) and sub-surface (6 m depth) samples using two independent techniques.Further research is required to understand the effects of microplastic-biota interaction within this productive environment.

View Article: PubMed Central - PubMed

Affiliation: Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, Dublin Road, Galway, Ireland.

ABSTRACT
Plastic, as a form of marine litter, is found in varying quantities and sizes around the globe from surface waters to deep-sea sediments. Identifying patterns of microplastic distribution will benefit an understanding of the scale of their potential effect on the environment and organisms. As sea ice extent is reducing in the Arctic, heightened shipping and fishing activity may increase marine pollution in the area. Microplastics may enter the region following ocean transport and local input, although baseline contamination measurements are still required. Here we present the first study of microplastics in Arctic waters, south and southwest of Svalbard, Norway. Microplastics were found in surface (top 16 cm) and sub-surface (6 m depth) samples using two independent techniques. Origins and pathways bringing microplastic to the Arctic remain unclear. Particle composition (95% fibres) suggests they may either result from the breakdown of larger items (transported over large distances by prevailing currents, or derived from local vessel activity), or input in sewage and wastewater from coastal areas. Concurrent observations of high zooplankton abundance suggest a high probability for marine biota to encounter microplastics and a potential for trophic interactions. Further research is required to understand the effects of microplastic-biota interaction within this productive environment.

No MeSH data available.