Limits...
The hand of Homo naledi.

Kivell TL, Deane AS, Tocheri MW, Orr CM, Schmid P, Hawks J, Berger LR, Churchill SE - Nat Commun (2015)

Bottom Line: Based on associated hominin material, the bones of this hand are attributed to Homo naledi.However, the finger bones are longer and more curved than in most australopiths, indicating frequent use of the hand during life for strong grasping during locomotor climbing and suspension.These markedly curved digits in combination with an otherwise human-like wrist and palm indicate a significant degree of climbing, despite the derived nature of many aspects of the hand and other regions of the postcranial skeleton in H. naledi.

View Article: PubMed Central - PubMed

Affiliation: Animal Postcranial Evolution Lab, Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Marlowe Building, Canterbury CT2 7NR, UK.

ABSTRACT
A nearly complete right hand of an adult hominin was recovered from the Rising Star cave system, South Africa. Based on associated hominin material, the bones of this hand are attributed to Homo naledi. This hand reveals a long, robust thumb and derived wrist morphology that is shared with Neandertals and modern humans, and considered adaptive for intensified manual manipulation. However, the finger bones are longer and more curved than in most australopiths, indicating frequent use of the hand during life for strong grasping during locomotor climbing and suspension. These markedly curved digits in combination with an otherwise human-like wrist and palm indicate a significant degree of climbing, despite the derived nature of many aspects of the hand and other regions of the postcranial skeleton in H. naledi.

No MeSH data available.


Related in: MedlinePlus

Phalangeal curvature in H. naledi.Above, proximal and IPs of the Hand 1 (a) second, (b) third (c) fourth and (d) fifth ray in lateral view (all to scale). Below, box-and-whisker plots of curvature in H. naledi (e) intermediate phalanges (n=14) and (f) proximal phalanges (n=11), quantified as the first polynomial coefficient (A) of the polynomial functions (y=Ax2+Bx+C) representing longitudinal shaft curvature of the dorsal surface. Vertical line represents the median value, boxes show the interquartile range and whiskers extend to the highest and lowest values of each taxon, excluding outliers (dots). The H. naledi sample is shown in red and extant taxa that are not statistically distinct from this sample (P≤0.05 based on one-way analysis of variance with Bonferroni correction) are shown in blue. ‘SKX Mem. 1' and ‘SKX Mem. 3' refer to the Swartkans phalanx sample from Members 1 and 3, respectively, that can be attributed to either A. robustus or early Homo. ‘UW 101-1635' is a juvenile H. naledi proximal phalanx. H. naledi is unusual compared with most other hominins in having both strongly curved proximal and intermediate phalanges.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4597335&req=5

f7: Phalangeal curvature in H. naledi.Above, proximal and IPs of the Hand 1 (a) second, (b) third (c) fourth and (d) fifth ray in lateral view (all to scale). Below, box-and-whisker plots of curvature in H. naledi (e) intermediate phalanges (n=14) and (f) proximal phalanges (n=11), quantified as the first polynomial coefficient (A) of the polynomial functions (y=Ax2+Bx+C) representing longitudinal shaft curvature of the dorsal surface. Vertical line represents the median value, boxes show the interquartile range and whiskers extend to the highest and lowest values of each taxon, excluding outliers (dots). The H. naledi sample is shown in red and extant taxa that are not statistically distinct from this sample (P≤0.05 based on one-way analysis of variance with Bonferroni correction) are shown in blue. ‘SKX Mem. 1' and ‘SKX Mem. 3' refer to the Swartkans phalanx sample from Members 1 and 3, respectively, that can be attributed to either A. robustus or early Homo. ‘UW 101-1635' is a juvenile H. naledi proximal phalanx. H. naledi is unusual compared with most other hominins in having both strongly curved proximal and intermediate phalanges.

Mentions: Modern human and Neandertal proximal and intermediate phalanges (IPs) are shorter, less curved and less robust, with poorly developed flexor tendon attachments compared with those of extant great apes (Fig. 7). Australopiths and OH7 generally demonstrate an intermediate condition, being slightly longer, more curved and/or more robust than the typical modern human/Neandertal morphology, but less so than observed in the extant apes1112273036.


The hand of Homo naledi.

Kivell TL, Deane AS, Tocheri MW, Orr CM, Schmid P, Hawks J, Berger LR, Churchill SE - Nat Commun (2015)

Phalangeal curvature in H. naledi.Above, proximal and IPs of the Hand 1 (a) second, (b) third (c) fourth and (d) fifth ray in lateral view (all to scale). Below, box-and-whisker plots of curvature in H. naledi (e) intermediate phalanges (n=14) and (f) proximal phalanges (n=11), quantified as the first polynomial coefficient (A) of the polynomial functions (y=Ax2+Bx+C) representing longitudinal shaft curvature of the dorsal surface. Vertical line represents the median value, boxes show the interquartile range and whiskers extend to the highest and lowest values of each taxon, excluding outliers (dots). The H. naledi sample is shown in red and extant taxa that are not statistically distinct from this sample (P≤0.05 based on one-way analysis of variance with Bonferroni correction) are shown in blue. ‘SKX Mem. 1' and ‘SKX Mem. 3' refer to the Swartkans phalanx sample from Members 1 and 3, respectively, that can be attributed to either A. robustus or early Homo. ‘UW 101-1635' is a juvenile H. naledi proximal phalanx. H. naledi is unusual compared with most other hominins in having both strongly curved proximal and intermediate phalanges.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4597335&req=5

f7: Phalangeal curvature in H. naledi.Above, proximal and IPs of the Hand 1 (a) second, (b) third (c) fourth and (d) fifth ray in lateral view (all to scale). Below, box-and-whisker plots of curvature in H. naledi (e) intermediate phalanges (n=14) and (f) proximal phalanges (n=11), quantified as the first polynomial coefficient (A) of the polynomial functions (y=Ax2+Bx+C) representing longitudinal shaft curvature of the dorsal surface. Vertical line represents the median value, boxes show the interquartile range and whiskers extend to the highest and lowest values of each taxon, excluding outliers (dots). The H. naledi sample is shown in red and extant taxa that are not statistically distinct from this sample (P≤0.05 based on one-way analysis of variance with Bonferroni correction) are shown in blue. ‘SKX Mem. 1' and ‘SKX Mem. 3' refer to the Swartkans phalanx sample from Members 1 and 3, respectively, that can be attributed to either A. robustus or early Homo. ‘UW 101-1635' is a juvenile H. naledi proximal phalanx. H. naledi is unusual compared with most other hominins in having both strongly curved proximal and intermediate phalanges.
Mentions: Modern human and Neandertal proximal and intermediate phalanges (IPs) are shorter, less curved and less robust, with poorly developed flexor tendon attachments compared with those of extant great apes (Fig. 7). Australopiths and OH7 generally demonstrate an intermediate condition, being slightly longer, more curved and/or more robust than the typical modern human/Neandertal morphology, but less so than observed in the extant apes1112273036.

Bottom Line: Based on associated hominin material, the bones of this hand are attributed to Homo naledi.However, the finger bones are longer and more curved than in most australopiths, indicating frequent use of the hand during life for strong grasping during locomotor climbing and suspension.These markedly curved digits in combination with an otherwise human-like wrist and palm indicate a significant degree of climbing, despite the derived nature of many aspects of the hand and other regions of the postcranial skeleton in H. naledi.

View Article: PubMed Central - PubMed

Affiliation: Animal Postcranial Evolution Lab, Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Marlowe Building, Canterbury CT2 7NR, UK.

ABSTRACT
A nearly complete right hand of an adult hominin was recovered from the Rising Star cave system, South Africa. Based on associated hominin material, the bones of this hand are attributed to Homo naledi. This hand reveals a long, robust thumb and derived wrist morphology that is shared with Neandertals and modern humans, and considered adaptive for intensified manual manipulation. However, the finger bones are longer and more curved than in most australopiths, indicating frequent use of the hand during life for strong grasping during locomotor climbing and suspension. These markedly curved digits in combination with an otherwise human-like wrist and palm indicate a significant degree of climbing, despite the derived nature of many aspects of the hand and other regions of the postcranial skeleton in H. naledi.

No MeSH data available.


Related in: MedlinePlus