Limits...
The hand of Homo naledi.

Kivell TL, Deane AS, Tocheri MW, Orr CM, Schmid P, Hawks J, Berger LR, Churchill SE - Nat Commun (2015)

Bottom Line: Based on associated hominin material, the bones of this hand are attributed to Homo naledi.However, the finger bones are longer and more curved than in most australopiths, indicating frequent use of the hand during life for strong grasping during locomotor climbing and suspension.These markedly curved digits in combination with an otherwise human-like wrist and palm indicate a significant degree of climbing, despite the derived nature of many aspects of the hand and other regions of the postcranial skeleton in H. naledi.

View Article: PubMed Central - PubMed

Affiliation: Animal Postcranial Evolution Lab, Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Marlowe Building, Canterbury CT2 7NR, UK.

ABSTRACT
A nearly complete right hand of an adult hominin was recovered from the Rising Star cave system, South Africa. Based on associated hominin material, the bones of this hand are attributed to Homo naledi. This hand reveals a long, robust thumb and derived wrist morphology that is shared with Neandertals and modern humans, and considered adaptive for intensified manual manipulation. However, the finger bones are longer and more curved than in most australopiths, indicating frequent use of the hand during life for strong grasping during locomotor climbing and suspension. These markedly curved digits in combination with an otherwise human-like wrist and palm indicate a significant degree of climbing, despite the derived nature of many aspects of the hand and other regions of the postcranial skeleton in H. naledi.

No MeSH data available.


H. naledi Hand 1 adult right hand.(a) Palmar (left) and dorsal (right) views of the right hand bones, (b) found in situ in semi-articulation with the palm up and fingers flexed. The palmar surface of the metacarpals (Mc) and dorsal surface of the intermediate phalanges (IP) can be seen. DP, distal phalanx; PP, proximal phalanx.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4597335&req=5

f1: H. naledi Hand 1 adult right hand.(a) Palmar (left) and dorsal (right) views of the right hand bones, (b) found in situ in semi-articulation with the palm up and fingers flexed. The palmar surface of the metacarpals (Mc) and dorsal surface of the intermediate phalanges (IP) can be seen. DP, distal phalanx; PP, proximal phalanx.

Mentions: A longstanding palaeoanthropological debate concerns the degree to which arboreal climbing and suspension remained an important component of the early hominin behavioural repertoire. Hominin hand anatomy can provide valuable insights into this debate, but well-preserved hand bones are relatively rare in the fossil record and multiple hand bones from the same individual are even rarer. To date, nearly 150 hand bone specimens attributed to H. naledi1 have been uncovered from the Dinaledi Chamber of the Rising Star cave system2, representing at least six adults and two immature individuals. Twenty-six of these bones are from the right hand (Hand 1) of an adult individual. Missing only its pisiform (post mortem), this hand is part of the paratype of H. naledi and was recovered partially articulated with the palm up and fingers flexed (Fig. 1). This hand is small, similar in size to that of the Australopithecus sediba female MH2 (ref. 3), although there are other adult hand bones in the H. naledi sample that are slightly smaller and others slightly larger1. Here we focus on the comparative and functional morphology of this nearly complete hand.


The hand of Homo naledi.

Kivell TL, Deane AS, Tocheri MW, Orr CM, Schmid P, Hawks J, Berger LR, Churchill SE - Nat Commun (2015)

H. naledi Hand 1 adult right hand.(a) Palmar (left) and dorsal (right) views of the right hand bones, (b) found in situ in semi-articulation with the palm up and fingers flexed. The palmar surface of the metacarpals (Mc) and dorsal surface of the intermediate phalanges (IP) can be seen. DP, distal phalanx; PP, proximal phalanx.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4597335&req=5

f1: H. naledi Hand 1 adult right hand.(a) Palmar (left) and dorsal (right) views of the right hand bones, (b) found in situ in semi-articulation with the palm up and fingers flexed. The palmar surface of the metacarpals (Mc) and dorsal surface of the intermediate phalanges (IP) can be seen. DP, distal phalanx; PP, proximal phalanx.
Mentions: A longstanding palaeoanthropological debate concerns the degree to which arboreal climbing and suspension remained an important component of the early hominin behavioural repertoire. Hominin hand anatomy can provide valuable insights into this debate, but well-preserved hand bones are relatively rare in the fossil record and multiple hand bones from the same individual are even rarer. To date, nearly 150 hand bone specimens attributed to H. naledi1 have been uncovered from the Dinaledi Chamber of the Rising Star cave system2, representing at least six adults and two immature individuals. Twenty-six of these bones are from the right hand (Hand 1) of an adult individual. Missing only its pisiform (post mortem), this hand is part of the paratype of H. naledi and was recovered partially articulated with the palm up and fingers flexed (Fig. 1). This hand is small, similar in size to that of the Australopithecus sediba female MH2 (ref. 3), although there are other adult hand bones in the H. naledi sample that are slightly smaller and others slightly larger1. Here we focus on the comparative and functional morphology of this nearly complete hand.

Bottom Line: Based on associated hominin material, the bones of this hand are attributed to Homo naledi.However, the finger bones are longer and more curved than in most australopiths, indicating frequent use of the hand during life for strong grasping during locomotor climbing and suspension.These markedly curved digits in combination with an otherwise human-like wrist and palm indicate a significant degree of climbing, despite the derived nature of many aspects of the hand and other regions of the postcranial skeleton in H. naledi.

View Article: PubMed Central - PubMed

Affiliation: Animal Postcranial Evolution Lab, Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Marlowe Building, Canterbury CT2 7NR, UK.

ABSTRACT
A nearly complete right hand of an adult hominin was recovered from the Rising Star cave system, South Africa. Based on associated hominin material, the bones of this hand are attributed to Homo naledi. This hand reveals a long, robust thumb and derived wrist morphology that is shared with Neandertals and modern humans, and considered adaptive for intensified manual manipulation. However, the finger bones are longer and more curved than in most australopiths, indicating frequent use of the hand during life for strong grasping during locomotor climbing and suspension. These markedly curved digits in combination with an otherwise human-like wrist and palm indicate a significant degree of climbing, despite the derived nature of many aspects of the hand and other regions of the postcranial skeleton in H. naledi.

No MeSH data available.