Limits...
Identification and Expression Profiles of Sex Pheromone Biosynthesis and Transport Related Genes in Spodoptera litura.

Zhang YN, Zhu XY, Fang LP, He P, Wang ZQ, Chen G, Sun L, Ye ZF, Deng DG, Li JB - PLoS ONE (2015)

Bottom Line: By sequencing and analyzing the transcriptomic data of the sex pheromone glands, we identified 94 candidate genes related to pheromone biosynthesis (55 genes) or chemoreception (39 genes).Gene expression patterns and phylogenetic analysis revealed that two desaturase genes (SlitDes5 and SlitDes11) and one fatty acyl reductase gene (SlitFAR3) showed pheromone gland (PG) biased or specific expression, and clustered with genes known to be involved in pheromone synthesis in other moth species.Furthermore, 4 chemoreception related genes (SlitOBP6, SlitOBP11, SlitCSP3, and SlitCSP14) also showed higher expression in the PG, and could be additional candidate genes involved in sex pheromone transport.

View Article: PubMed Central - PubMed

Affiliation: College of Life Sciences, Huaibei Normal University, Huaibei, China.

ABSTRACT
Although the general pathway of sex pheromone synthesis in moth species has been established, the molecular mechanisms remain poorly understood. The common cutworm Spodoptera litura is an important agricultural pest worldwide and causes huge economic losses annually. The female sex pheromone of S. litura comprises Z9,E11-14:OAc, Z9,E12-14:OAc, Z9-14:OAc, and E11-14:OAc. By sequencing and analyzing the transcriptomic data of the sex pheromone glands, we identified 94 candidate genes related to pheromone biosynthesis (55 genes) or chemoreception (39 genes). Gene expression patterns and phylogenetic analysis revealed that two desaturase genes (SlitDes5 and SlitDes11) and one fatty acyl reductase gene (SlitFAR3) showed pheromone gland (PG) biased or specific expression, and clustered with genes known to be involved in pheromone synthesis in other moth species. Furthermore, 4 chemoreception related genes (SlitOBP6, SlitOBP11, SlitCSP3, and SlitCSP14) also showed higher expression in the PG, and could be additional candidate genes involved in sex pheromone transport. This study provides the first solid background information that should facilitate further elucidation of sex pheromone biosynthesis and transport, and indicates potential targets to disrupt sexual communication in S. litura for a novel pest management strategy.

No MeSH data available.


Related in: MedlinePlus

Expression patterns of sex pheromone biosynthesis related genes, using RT-PCR.(A) Expression of Des genes. (B) Expression of FAR genes. (C) Expression of ACT genes. (D) Expression of ACBP, FATP and ACC genes. GAPDH gene was used as a positive control and NC (no cDNA template) as a negative control. PG, female pheromone glands; B, whole insect body without PGs.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4596838&req=5

pone.0140019.g004: Expression patterns of sex pheromone biosynthesis related genes, using RT-PCR.(A) Expression of Des genes. (B) Expression of FAR genes. (C) Expression of ACT genes. (D) Expression of ACBP, FATP and ACC genes. GAPDH gene was used as a positive control and NC (no cDNA template) as a negative control. PG, female pheromone glands; B, whole insect body without PGs.

Mentions: To investigate the general expression profiles of the candidate genes, reverse transcription-polymerase chain reaction (RT-PCR) analyses were conducted for all 94 genes (Figs 4 and 5), and the expression levels of 16 selected genes were further quantified with qPCR (Fig 6) to validate the RT-PCR results. The overall relative expression profiles of these genes in different tissues obtained were similar with the two methods.


Identification and Expression Profiles of Sex Pheromone Biosynthesis and Transport Related Genes in Spodoptera litura.

Zhang YN, Zhu XY, Fang LP, He P, Wang ZQ, Chen G, Sun L, Ye ZF, Deng DG, Li JB - PLoS ONE (2015)

Expression patterns of sex pheromone biosynthesis related genes, using RT-PCR.(A) Expression of Des genes. (B) Expression of FAR genes. (C) Expression of ACT genes. (D) Expression of ACBP, FATP and ACC genes. GAPDH gene was used as a positive control and NC (no cDNA template) as a negative control. PG, female pheromone glands; B, whole insect body without PGs.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4596838&req=5

pone.0140019.g004: Expression patterns of sex pheromone biosynthesis related genes, using RT-PCR.(A) Expression of Des genes. (B) Expression of FAR genes. (C) Expression of ACT genes. (D) Expression of ACBP, FATP and ACC genes. GAPDH gene was used as a positive control and NC (no cDNA template) as a negative control. PG, female pheromone glands; B, whole insect body without PGs.
Mentions: To investigate the general expression profiles of the candidate genes, reverse transcription-polymerase chain reaction (RT-PCR) analyses were conducted for all 94 genes (Figs 4 and 5), and the expression levels of 16 selected genes were further quantified with qPCR (Fig 6) to validate the RT-PCR results. The overall relative expression profiles of these genes in different tissues obtained were similar with the two methods.

Bottom Line: By sequencing and analyzing the transcriptomic data of the sex pheromone glands, we identified 94 candidate genes related to pheromone biosynthesis (55 genes) or chemoreception (39 genes).Gene expression patterns and phylogenetic analysis revealed that two desaturase genes (SlitDes5 and SlitDes11) and one fatty acyl reductase gene (SlitFAR3) showed pheromone gland (PG) biased or specific expression, and clustered with genes known to be involved in pheromone synthesis in other moth species.Furthermore, 4 chemoreception related genes (SlitOBP6, SlitOBP11, SlitCSP3, and SlitCSP14) also showed higher expression in the PG, and could be additional candidate genes involved in sex pheromone transport.

View Article: PubMed Central - PubMed

Affiliation: College of Life Sciences, Huaibei Normal University, Huaibei, China.

ABSTRACT
Although the general pathway of sex pheromone synthesis in moth species has been established, the molecular mechanisms remain poorly understood. The common cutworm Spodoptera litura is an important agricultural pest worldwide and causes huge economic losses annually. The female sex pheromone of S. litura comprises Z9,E11-14:OAc, Z9,E12-14:OAc, Z9-14:OAc, and E11-14:OAc. By sequencing and analyzing the transcriptomic data of the sex pheromone glands, we identified 94 candidate genes related to pheromone biosynthesis (55 genes) or chemoreception (39 genes). Gene expression patterns and phylogenetic analysis revealed that two desaturase genes (SlitDes5 and SlitDes11) and one fatty acyl reductase gene (SlitFAR3) showed pheromone gland (PG) biased or specific expression, and clustered with genes known to be involved in pheromone synthesis in other moth species. Furthermore, 4 chemoreception related genes (SlitOBP6, SlitOBP11, SlitCSP3, and SlitCSP14) also showed higher expression in the PG, and could be additional candidate genes involved in sex pheromone transport. This study provides the first solid background information that should facilitate further elucidation of sex pheromone biosynthesis and transport, and indicates potential targets to disrupt sexual communication in S. litura for a novel pest management strategy.

No MeSH data available.


Related in: MedlinePlus