Limits...
No Effect of 2 mA Anodal tDCS Over the M1 on Performance and Practice Effect on Grooved Pegboard Test and Trail Making Test B(1,2,3).

Fagerlund AJ, Freili JL, Danielsen TL, Aslaksen PM - eNeuro (2015)

Bottom Line: Adverse effects were registered using a standardized form.The results indicated no effect of tDCS on performance and practice effects on the GPT and TMT.The present results suggest that impedance levels in tDCS studies should be routinely reported in future studies, as it might not only provide valuable information on the efficacy of the blinding conditions and participant discomfort, but also correlate with individual differences that are relevant to the outcome of the stimulation.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Psychology, Faculty of Health Sciences, The Arctic University of Norway , 9037 Tromsø, Norway.

ABSTRACT
Previous studies suggest that transcranial direct current stimulation (tDCS) can facilitate motor performance and learning. In this double-blind experiment, 60 healthy human subjects (29 females) were randomized into three groups (active tDCS, sham tDCS, and no-treatment control group) in order to investigate the effect of a 20 min session of 2 mA tDCS over the motor cortex contralateral to the dominant hand on practice effect and performance on the Grooved Pegboard Test (GPT) and Trail Making Test (TMT). Performance was operationalized as the time to complete the tests before, during, and after stimulation. The practice effect was termed as the difference in time to complete the tests from pretest to post-test. Data on body mass index (BMI), head circumference, sleep status, interelectrode impedance, and caffeine and nicotine use were sampled to control for the influence of individual differences on the effect of tDCS. Adverse effects were registered using a standardized form. The results indicated no effect of tDCS on performance and practice effects on the GPT and TMT. For all groups, BMI was a predictor for a practice effect on the TMT. In the active tDCS group, high caffeine intake and low impedance predicted a practice effect on the GPT for the dominant hand. The present results suggest that impedance levels in tDCS studies should be routinely reported in future studies, as it might not only provide valuable information on the efficacy of the blinding conditions and participant discomfort, but also correlate with individual differences that are relevant to the outcome of the stimulation.

No MeSH data available.


Overview of the experimental procedure. The control group followed the same procedure as the active and sham groups, but without the electrode montage. Stimulation started immediately after tests at T1 were completed. Tests at T2 were administered after 7 min of stimulation. Tests at T3 were administered immediately after the stimulation was completed.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4596020&req=5

Figure 1: Overview of the experimental procedure. The control group followed the same procedure as the active and sham groups, but without the electrode montage. Stimulation started immediately after tests at T1 were completed. Tests at T2 were administered after 7 min of stimulation. Tests at T3 were administered immediately after the stimulation was completed.

Mentions: Prior to conducting the study, the participants were screened for exclusion criteria, and the control data were obtained (Fig. 1). All trials in the study were conducted by the same two female experimenters in a soundproof laboratory with thermostatic controlled temperature. The control group underwent the same procedure as the active and sham groups, without the electrode montage. For the active and sham groups, the electrodes were mounted on the scalp, and the participants performed the pretest GPD (GPD1), GPN (GPN1), and TMT (TMT1; Figs. 2, 3). After completing the pretest, the tDCS was started, and after 1 min the impedance (in kilo-ohm), as indicated in the stimulator display, was registered. After 7 min of stimulation, the participants performed the tests under stimulation (GPD2, GPN2, TMT2). Finally, after the 20 min stimulation was complete, the participants performed the post-test (GPD3, GPN3, and TMT3). For the control group, the timing of the test administration was synchronized with that of the active and sham groups so that the total duration of the study was similar across all three groups. Adverse effects from the stimulation were registered in the active and sham groups immediately after the study using a structured interview.


No Effect of 2 mA Anodal tDCS Over the M1 on Performance and Practice Effect on Grooved Pegboard Test and Trail Making Test B(1,2,3).

Fagerlund AJ, Freili JL, Danielsen TL, Aslaksen PM - eNeuro (2015)

Overview of the experimental procedure. The control group followed the same procedure as the active and sham groups, but without the electrode montage. Stimulation started immediately after tests at T1 were completed. Tests at T2 were administered after 7 min of stimulation. Tests at T3 were administered immediately after the stimulation was completed.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4596020&req=5

Figure 1: Overview of the experimental procedure. The control group followed the same procedure as the active and sham groups, but without the electrode montage. Stimulation started immediately after tests at T1 were completed. Tests at T2 were administered after 7 min of stimulation. Tests at T3 were administered immediately after the stimulation was completed.
Mentions: Prior to conducting the study, the participants were screened for exclusion criteria, and the control data were obtained (Fig. 1). All trials in the study were conducted by the same two female experimenters in a soundproof laboratory with thermostatic controlled temperature. The control group underwent the same procedure as the active and sham groups, without the electrode montage. For the active and sham groups, the electrodes were mounted on the scalp, and the participants performed the pretest GPD (GPD1), GPN (GPN1), and TMT (TMT1; Figs. 2, 3). After completing the pretest, the tDCS was started, and after 1 min the impedance (in kilo-ohm), as indicated in the stimulator display, was registered. After 7 min of stimulation, the participants performed the tests under stimulation (GPD2, GPN2, TMT2). Finally, after the 20 min stimulation was complete, the participants performed the post-test (GPD3, GPN3, and TMT3). For the control group, the timing of the test administration was synchronized with that of the active and sham groups so that the total duration of the study was similar across all three groups. Adverse effects from the stimulation were registered in the active and sham groups immediately after the study using a structured interview.

Bottom Line: Adverse effects were registered using a standardized form.The results indicated no effect of tDCS on performance and practice effects on the GPT and TMT.The present results suggest that impedance levels in tDCS studies should be routinely reported in future studies, as it might not only provide valuable information on the efficacy of the blinding conditions and participant discomfort, but also correlate with individual differences that are relevant to the outcome of the stimulation.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Psychology, Faculty of Health Sciences, The Arctic University of Norway , 9037 Tromsø, Norway.

ABSTRACT
Previous studies suggest that transcranial direct current stimulation (tDCS) can facilitate motor performance and learning. In this double-blind experiment, 60 healthy human subjects (29 females) were randomized into three groups (active tDCS, sham tDCS, and no-treatment control group) in order to investigate the effect of a 20 min session of 2 mA tDCS over the motor cortex contralateral to the dominant hand on practice effect and performance on the Grooved Pegboard Test (GPT) and Trail Making Test (TMT). Performance was operationalized as the time to complete the tests before, during, and after stimulation. The practice effect was termed as the difference in time to complete the tests from pretest to post-test. Data on body mass index (BMI), head circumference, sleep status, interelectrode impedance, and caffeine and nicotine use were sampled to control for the influence of individual differences on the effect of tDCS. Adverse effects were registered using a standardized form. The results indicated no effect of tDCS on performance and practice effects on the GPT and TMT. For all groups, BMI was a predictor for a practice effect on the TMT. In the active tDCS group, high caffeine intake and low impedance predicted a practice effect on the GPT for the dominant hand. The present results suggest that impedance levels in tDCS studies should be routinely reported in future studies, as it might not only provide valuable information on the efficacy of the blinding conditions and participant discomfort, but also correlate with individual differences that are relevant to the outcome of the stimulation.

No MeSH data available.