Limits...
High-density mapping suggests cytoplasmic male sterility with two restorer genes in almond × peach progenies.

Donoso JM, Eduardo I, Picañol R, Batlle I, Howad W, Aranzana MJ, Arús P - Hortic Res (2015)

Bottom Line: The restorer genes were located in a 3.4 Mbp fragment of linkage group 2 (Rf1) and 1.4 Mbp of linkage group 6 (Rf2).Both fragments contained several genes coding for pentatricopeptide proteins, demonstrated to be responsible for restoring fertility in other species.The implications of these results for using almond as a source of novel variability in peach are discussed.

View Article: PubMed Central - PubMed

Affiliation: IRTA, Centre de Recerca en Agrigenòmica CSIC-IRTA-UAB-UB; Campus UAB, Bellaterra (Cerdanyola del Vallès) , 08193 Barcelona, Spain.

ABSTRACT
Peach (Prunus persica) and almond (Prunus dulcis) are two sexually compatible species that produce fertile offspring. Almond, a highly polymorphic species, is a potential source of new genes for peach that has a strongly eroded gene pool. Here we describe the genetics of a male sterile phenotype that segregated in two almond ('Texas') × peach ('Earlygold') progenies: an F2 (T×E) and a backcross one (T1E) to the 'Earlygold' parent. High-density maps were developed using a 9k peach SNP chip and 135 simple-sequence repeats. Three highly syntenic and collinear maps were obtained: one for the F2 (T×E) and two for the backcross, T1E (for the hybrid) and E (for 'Earlygold'). A major reduction of recombination was observed in the interspecific maps (T×E and T1E) compared to the intraspecific parent (E). The E map also had extensive monomorphic genomic regions suggesting the presence of large DNA fragments identical by descent. Our data for the male sterility character were consistent with the existence of cytoplasmic male sterility, where individuals having the almond cytoplasm required the almond allele in at least one of two independent restorer genes, Rf1 and Rf2, to be fertile. The restorer genes were located in a 3.4 Mbp fragment of linkage group 2 (Rf1) and 1.4 Mbp of linkage group 6 (Rf2). Both fragments contained several genes coding for pentatricopeptide proteins, demonstrated to be responsible for restoring fertility in other species. The implications of these results for using almond as a source of novel variability in peach are discussed.

No MeSH data available.


Related in: MedlinePlus

Male fertile and sterile phenotypes in the almond × peach F2 and BC1 progenies. (a) Parental flowers: ‘Texas’ (T), MB1.37 (F1), ‘Earlygold’ (E). (b) Flowers from four F2 individuals. (c) Flowers from four BC1 individuals. The first individual from each population (56 of T×E and 23 of T1E) were male sterile with white anthers and absence of pollen. The other individuals with colored anthers were fertile.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4595988&req=5

fig1: Male fertile and sterile phenotypes in the almond × peach F2 and BC1 progenies. (a) Parental flowers: ‘Texas’ (T), MB1.37 (F1), ‘Earlygold’ (E). (b) Flowers from four F2 individuals. (c) Flowers from four BC1 individuals. The first individual from each population (56 of T×E and 23 of T1E) were male sterile with white anthers and absence of pollen. The other individuals with colored anthers were fertile.

Mentions: The male sterility character was studied over three seasons (2010–2013) by visual inspection. The plants analyzed were those that were alive at the moment of phenotyping (90 for T×E and 174 for T1E). Male sterile plants were characterized by the lack of pollen and empty, white anthers, in contrast to the fertile plants which had pollen and anthers ranging from yellow to anthocyanic (Figure 1). In addition, the pollen germination capacity in the 121 T1E individuals that produced pollen was evaluated in vitro according the protocol described by17 with an additional 15% sucrose. At the end of the process, each plant was characterized either as sterile or fertile.


High-density mapping suggests cytoplasmic male sterility with two restorer genes in almond × peach progenies.

Donoso JM, Eduardo I, Picañol R, Batlle I, Howad W, Aranzana MJ, Arús P - Hortic Res (2015)

Male fertile and sterile phenotypes in the almond × peach F2 and BC1 progenies. (a) Parental flowers: ‘Texas’ (T), MB1.37 (F1), ‘Earlygold’ (E). (b) Flowers from four F2 individuals. (c) Flowers from four BC1 individuals. The first individual from each population (56 of T×E and 23 of T1E) were male sterile with white anthers and absence of pollen. The other individuals with colored anthers were fertile.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4595988&req=5

fig1: Male fertile and sterile phenotypes in the almond × peach F2 and BC1 progenies. (a) Parental flowers: ‘Texas’ (T), MB1.37 (F1), ‘Earlygold’ (E). (b) Flowers from four F2 individuals. (c) Flowers from four BC1 individuals. The first individual from each population (56 of T×E and 23 of T1E) were male sterile with white anthers and absence of pollen. The other individuals with colored anthers were fertile.
Mentions: The male sterility character was studied over three seasons (2010–2013) by visual inspection. The plants analyzed were those that were alive at the moment of phenotyping (90 for T×E and 174 for T1E). Male sterile plants were characterized by the lack of pollen and empty, white anthers, in contrast to the fertile plants which had pollen and anthers ranging from yellow to anthocyanic (Figure 1). In addition, the pollen germination capacity in the 121 T1E individuals that produced pollen was evaluated in vitro according the protocol described by17 with an additional 15% sucrose. At the end of the process, each plant was characterized either as sterile or fertile.

Bottom Line: The restorer genes were located in a 3.4 Mbp fragment of linkage group 2 (Rf1) and 1.4 Mbp of linkage group 6 (Rf2).Both fragments contained several genes coding for pentatricopeptide proteins, demonstrated to be responsible for restoring fertility in other species.The implications of these results for using almond as a source of novel variability in peach are discussed.

View Article: PubMed Central - PubMed

Affiliation: IRTA, Centre de Recerca en Agrigenòmica CSIC-IRTA-UAB-UB; Campus UAB, Bellaterra (Cerdanyola del Vallès) , 08193 Barcelona, Spain.

ABSTRACT
Peach (Prunus persica) and almond (Prunus dulcis) are two sexually compatible species that produce fertile offspring. Almond, a highly polymorphic species, is a potential source of new genes for peach that has a strongly eroded gene pool. Here we describe the genetics of a male sterile phenotype that segregated in two almond ('Texas') × peach ('Earlygold') progenies: an F2 (T×E) and a backcross one (T1E) to the 'Earlygold' parent. High-density maps were developed using a 9k peach SNP chip and 135 simple-sequence repeats. Three highly syntenic and collinear maps were obtained: one for the F2 (T×E) and two for the backcross, T1E (for the hybrid) and E (for 'Earlygold'). A major reduction of recombination was observed in the interspecific maps (T×E and T1E) compared to the intraspecific parent (E). The E map also had extensive monomorphic genomic regions suggesting the presence of large DNA fragments identical by descent. Our data for the male sterility character were consistent with the existence of cytoplasmic male sterility, where individuals having the almond cytoplasm required the almond allele in at least one of two independent restorer genes, Rf1 and Rf2, to be fertile. The restorer genes were located in a 3.4 Mbp fragment of linkage group 2 (Rf1) and 1.4 Mbp of linkage group 6 (Rf2). Both fragments contained several genes coding for pentatricopeptide proteins, demonstrated to be responsible for restoring fertility in other species. The implications of these results for using almond as a source of novel variability in peach are discussed.

No MeSH data available.


Related in: MedlinePlus