Limits...
Preparation and Characterization of Self-Microemulsifying Drug Delivery System of Olmesartan Medoxomil for Bioavailability Improvement.

Prajapati ST, Joshi HA, Patel CN - J Pharm (Cairo) (2012)

Bottom Line: Pseudoternary phase diagrams were constructed using Acrysol EL 135, Tween 80, Transcutol P, and distilled water to identify the efficient self-microemulsification region.The in vitro and ex vivo diffusion rate of the drug from the SMEDDS was significantly higher than that of the plain drug suspension.It was concluded that SMEDDS would be a promising drug delivery system for poorly water-soluble drugs by the oral route.

View Article: PubMed Central - PubMed

Affiliation: Department of Pharmaceutics and Pharmaceutical Technology, Shri Sarvajanik Pharmacy College, Near Arvind Buag, Gujarat, Mehsana 384001, India.

ABSTRACT
Olmesartan medoxomil (OLM) is an angiotensin II receptor blocker (ARB) antihypertensive agent administered orally that has absolute bioavailability of only 26% due to the poor aqueous solubility (7.75 μg/ml). The aim of the present investigation was to develop a self-microemulsifying drug delivery system (SMEDDS) to enhance the oral absorption of OLM. The solubility of OLM in various oils, surfactants, and cosurfactants was determined. Pseudoternary phase diagrams were constructed using Acrysol EL 135, Tween 80, Transcutol P, and distilled water to identify the efficient self-microemulsification region. Prepared SMEDDS was further evaluated for its emulsification time, drug content, optical clarity, droplet size, zeta potential, in vitro dissolution, and in vitro and ex vivo drug diffusion study. The optimized formulation S2 contained OLM (20 mg), Tween 80 (33%v/v), Transcutol P (33%v/v), and Acrysol EL 135 (34%v/v) had shown the smallest particle size, maximum solubility, less emulsification time, good optical clarity, and in vitro release. The in vitro and ex vivo diffusion rate of the drug from the SMEDDS was significantly higher than that of the plain drug suspension. It was concluded that SMEDDS would be a promising drug delivery system for poorly water-soluble drugs by the oral route.

No MeSH data available.


Ex vivo intestinal permeability study of optimized SMEDDS (batch S2) formulation and plain drug.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4595970&req=5

fig6: Ex vivo intestinal permeability study of optimized SMEDDS (batch S2) formulation and plain drug.

Mentions: The results of the ex vivo intestinal permeability study are shown in Figure 6. After 6 h of diffusion, 78.7% of the drug was diffused from the SMEDDS, while from plain drug suspension the diffusion was found to be 41.3%. Thus, the amount of the drug diffused through the biological membrane has doubled when it is given in the form of a SMEDDS. The enhancement in diffusion is due to formation of microemulsion droplets in nanometer range and improved permeation of the OLM because of the presence of surfactant, which reduces the interfacial tension of formulation.


Preparation and Characterization of Self-Microemulsifying Drug Delivery System of Olmesartan Medoxomil for Bioavailability Improvement.

Prajapati ST, Joshi HA, Patel CN - J Pharm (Cairo) (2012)

Ex vivo intestinal permeability study of optimized SMEDDS (batch S2) formulation and plain drug.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4595970&req=5

fig6: Ex vivo intestinal permeability study of optimized SMEDDS (batch S2) formulation and plain drug.
Mentions: The results of the ex vivo intestinal permeability study are shown in Figure 6. After 6 h of diffusion, 78.7% of the drug was diffused from the SMEDDS, while from plain drug suspension the diffusion was found to be 41.3%. Thus, the amount of the drug diffused through the biological membrane has doubled when it is given in the form of a SMEDDS. The enhancement in diffusion is due to formation of microemulsion droplets in nanometer range and improved permeation of the OLM because of the presence of surfactant, which reduces the interfacial tension of formulation.

Bottom Line: Pseudoternary phase diagrams were constructed using Acrysol EL 135, Tween 80, Transcutol P, and distilled water to identify the efficient self-microemulsification region.The in vitro and ex vivo diffusion rate of the drug from the SMEDDS was significantly higher than that of the plain drug suspension.It was concluded that SMEDDS would be a promising drug delivery system for poorly water-soluble drugs by the oral route.

View Article: PubMed Central - PubMed

Affiliation: Department of Pharmaceutics and Pharmaceutical Technology, Shri Sarvajanik Pharmacy College, Near Arvind Buag, Gujarat, Mehsana 384001, India.

ABSTRACT
Olmesartan medoxomil (OLM) is an angiotensin II receptor blocker (ARB) antihypertensive agent administered orally that has absolute bioavailability of only 26% due to the poor aqueous solubility (7.75 μg/ml). The aim of the present investigation was to develop a self-microemulsifying drug delivery system (SMEDDS) to enhance the oral absorption of OLM. The solubility of OLM in various oils, surfactants, and cosurfactants was determined. Pseudoternary phase diagrams were constructed using Acrysol EL 135, Tween 80, Transcutol P, and distilled water to identify the efficient self-microemulsification region. Prepared SMEDDS was further evaluated for its emulsification time, drug content, optical clarity, droplet size, zeta potential, in vitro dissolution, and in vitro and ex vivo drug diffusion study. The optimized formulation S2 contained OLM (20 mg), Tween 80 (33%v/v), Transcutol P (33%v/v), and Acrysol EL 135 (34%v/v) had shown the smallest particle size, maximum solubility, less emulsification time, good optical clarity, and in vitro release. The in vitro and ex vivo diffusion rate of the drug from the SMEDDS was significantly higher than that of the plain drug suspension. It was concluded that SMEDDS would be a promising drug delivery system for poorly water-soluble drugs by the oral route.

No MeSH data available.