Limits...
Optimization of Carboxymethyl-Xyloglucan-Based Tramadol Matrix Tablets Using Simplex Centroid Mixture Design.

Madgulkar AR, Bhalekar MR, Padalkar RR, Shaikh MY - J Pharm (Cairo) (2012)

Bottom Line: The formulated tablets showed anomalous release mechanism and followed matrix drug release kinetics, resulting in regulated and complete release from the tablets within 8 to 10 hours.The polymer carboxymethyl xyloglucan and HPMC K100M had significant effect on drug release from the tablet (P > 0.05).The statistical models developed for optimization were found to be valid.

View Article: PubMed Central - PubMed

Affiliation: Department of Pharmaceutics, AISSMS College of Pharmacy, Kennedy Road, Pune 411001, Maharashtra, India.

ABSTRACT
The aim was to determine the release-modifying effect of carboxymethyl xyloglucan for oral drug delivery. Sustained release matrix tablets of tramadol HCl were prepared by wet granulation method using carboxymethyl xyloglucan as matrix forming polymer. HPMC K100M was used in a small amount to control the burst effect which is most commonly seen with natural hydrophilic polymers. A simplex centroid design with three independent variables and two dependent variables was employed to systematically optimize drug release profile. Carboxymethyl xyloglucan (X 1), HPMC K100M (X 2), and dicalcium phosphate (X 3) were taken as independent variables. The dependent variables selected were percent of drug release at 2nd hour (Y 1) and at 8th hour (Y 2). Response surface plots were developed, and optimum formulations were selected on the basis of desirability. The formulated tablets showed anomalous release mechanism and followed matrix drug release kinetics, resulting in regulated and complete release from the tablets within 8 to 10 hours. The polymer carboxymethyl xyloglucan and HPMC K100M had significant effect on drug release from the tablet (P > 0.05). Polynomial mathematical models, generated for various response variables using multiple regression analysis, were found to be statistically significant (P > 0.05). The statistical models developed for optimization were found to be valid.

No MeSH data available.


Related in: MedlinePlus

Diagram indicating the burst effect phenomenon.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4595968&req=5

fig1: Diagram indicating the burst effect phenomenon.

Mentions: Matrix tablets, each containing 100 mg of Tramadol HCl, were prepared. For determining levels of carboxymethyl xyloglucan, initial trial batches with different concentrations of carboxymethyl xyloglucan were prepared and evaluated for physico-chemical properties of formulation and dissolution studies. In the trial runs, carboxymethyl xyloglucan concentration was varied from 50 to 250 mg. It was observed that as the concentration of carboxymethyl xyloglucan increased, the retarding effect of the formulation also increased, but a phenomenon of burst effect was prominently seen in all the formulations (Figure 1). Hence, to prevent the burst effect HPMC K100M was used. The quantities of other ingredients were kept constant, that is, DCP at 20 mg. Magnesium stearate and talc at 5 mg were used as a lubricant and a glidant, respectively.


Optimization of Carboxymethyl-Xyloglucan-Based Tramadol Matrix Tablets Using Simplex Centroid Mixture Design.

Madgulkar AR, Bhalekar MR, Padalkar RR, Shaikh MY - J Pharm (Cairo) (2012)

Diagram indicating the burst effect phenomenon.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4595968&req=5

fig1: Diagram indicating the burst effect phenomenon.
Mentions: Matrix tablets, each containing 100 mg of Tramadol HCl, were prepared. For determining levels of carboxymethyl xyloglucan, initial trial batches with different concentrations of carboxymethyl xyloglucan were prepared and evaluated for physico-chemical properties of formulation and dissolution studies. In the trial runs, carboxymethyl xyloglucan concentration was varied from 50 to 250 mg. It was observed that as the concentration of carboxymethyl xyloglucan increased, the retarding effect of the formulation also increased, but a phenomenon of burst effect was prominently seen in all the formulations (Figure 1). Hence, to prevent the burst effect HPMC K100M was used. The quantities of other ingredients were kept constant, that is, DCP at 20 mg. Magnesium stearate and talc at 5 mg were used as a lubricant and a glidant, respectively.

Bottom Line: The formulated tablets showed anomalous release mechanism and followed matrix drug release kinetics, resulting in regulated and complete release from the tablets within 8 to 10 hours.The polymer carboxymethyl xyloglucan and HPMC K100M had significant effect on drug release from the tablet (P > 0.05).The statistical models developed for optimization were found to be valid.

View Article: PubMed Central - PubMed

Affiliation: Department of Pharmaceutics, AISSMS College of Pharmacy, Kennedy Road, Pune 411001, Maharashtra, India.

ABSTRACT
The aim was to determine the release-modifying effect of carboxymethyl xyloglucan for oral drug delivery. Sustained release matrix tablets of tramadol HCl were prepared by wet granulation method using carboxymethyl xyloglucan as matrix forming polymer. HPMC K100M was used in a small amount to control the burst effect which is most commonly seen with natural hydrophilic polymers. A simplex centroid design with three independent variables and two dependent variables was employed to systematically optimize drug release profile. Carboxymethyl xyloglucan (X 1), HPMC K100M (X 2), and dicalcium phosphate (X 3) were taken as independent variables. The dependent variables selected were percent of drug release at 2nd hour (Y 1) and at 8th hour (Y 2). Response surface plots were developed, and optimum formulations were selected on the basis of desirability. The formulated tablets showed anomalous release mechanism and followed matrix drug release kinetics, resulting in regulated and complete release from the tablets within 8 to 10 hours. The polymer carboxymethyl xyloglucan and HPMC K100M had significant effect on drug release from the tablet (P > 0.05). Polynomial mathematical models, generated for various response variables using multiple regression analysis, were found to be statistically significant (P > 0.05). The statistical models developed for optimization were found to be valid.

No MeSH data available.


Related in: MedlinePlus