Limits...
In Vitro and In Vivo Evaluation of Oxatomide β -Cyclodextrin Inclusion Complex.

Hashem FM, Mostafa M, Shaker M, Nasr M - J Pharm (Cairo) (2012)

Bottom Line: The coevaporated complex prepared in presence of PVP-K15 showed a prompt drug release and significantly increased % dissolution efficiency (P < 0.05) compared to the pure oxatomide.Moreover, the results of bioavailability evaluation of this complex in rabbits compared to commercial drug product indicated a 73.15% increase in the oral bioavailability of oxatomide.In conclusion, inclusion complex of oxatomide with β-cyclodextrin prepared by coevaporation in presence of PVP-K15 not only results in an enhancement of the oxatomide dissolution rate but also improves the bioavailability of oxatomide.

View Article: PubMed Central - PubMed

Affiliation: Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo 11790, Egypt.

ABSTRACT
The objective of this study was to evaluate the influence of oxatomide β-cyclodextrin inclusion complex on the physicochemical properties and bioavailability of the drug. Oxatomide β-cyclodextrin solid complex was prepared with equimolar ratio of both oxatomide and β-cyclodextrin in presence or absence of water soluble polymers using different techniques. The coevaporated complex prepared in presence of PVP-K15 showed a prompt drug release and significantly increased % dissolution efficiency (P < 0.05) compared to the pure oxatomide. Moreover, the results of bioavailability evaluation of this complex in rabbits compared to commercial drug product indicated a 73.15% increase in the oral bioavailability of oxatomide. In conclusion, inclusion complex of oxatomide with β-cyclodextrin prepared by coevaporation in presence of PVP-K15 not only results in an enhancement of the oxatomide dissolution rate but also improves the bioavailability of oxatomide.

No MeSH data available.


Related in: MedlinePlus

X-ray diffraction patterns of oxatomide (1), β-cyclodextrin (2), physical mixture (3), kneaded mixture (4), coevaporated (5), freeze-dried (6), and spray-dried (7) inclusion complexes of equimolar ratio of oxatomide and β-cyclodextrin.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4595936&req=5

fig4: X-ray diffraction patterns of oxatomide (1), β-cyclodextrin (2), physical mixture (3), kneaded mixture (4), coevaporated (5), freeze-dried (6), and spray-dried (7) inclusion complexes of equimolar ratio of oxatomide and β-cyclodextrin.

Mentions: The X-ray diffraction patterns of pure oxatomide, β-cyclodextrin, and their physical and kneaded mixture, coevaporated, freeze-dried, and spray-dried inclusion complexes are represented in Figure 4. The diffractograms of oxatomide and β-cyclodextrin exhibited a series of intense peaks which are indicative of their crystallinity.


In Vitro and In Vivo Evaluation of Oxatomide β -Cyclodextrin Inclusion Complex.

Hashem FM, Mostafa M, Shaker M, Nasr M - J Pharm (Cairo) (2012)

X-ray diffraction patterns of oxatomide (1), β-cyclodextrin (2), physical mixture (3), kneaded mixture (4), coevaporated (5), freeze-dried (6), and spray-dried (7) inclusion complexes of equimolar ratio of oxatomide and β-cyclodextrin.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4595936&req=5

fig4: X-ray diffraction patterns of oxatomide (1), β-cyclodextrin (2), physical mixture (3), kneaded mixture (4), coevaporated (5), freeze-dried (6), and spray-dried (7) inclusion complexes of equimolar ratio of oxatomide and β-cyclodextrin.
Mentions: The X-ray diffraction patterns of pure oxatomide, β-cyclodextrin, and their physical and kneaded mixture, coevaporated, freeze-dried, and spray-dried inclusion complexes are represented in Figure 4. The diffractograms of oxatomide and β-cyclodextrin exhibited a series of intense peaks which are indicative of their crystallinity.

Bottom Line: The coevaporated complex prepared in presence of PVP-K15 showed a prompt drug release and significantly increased % dissolution efficiency (P < 0.05) compared to the pure oxatomide.Moreover, the results of bioavailability evaluation of this complex in rabbits compared to commercial drug product indicated a 73.15% increase in the oral bioavailability of oxatomide.In conclusion, inclusion complex of oxatomide with β-cyclodextrin prepared by coevaporation in presence of PVP-K15 not only results in an enhancement of the oxatomide dissolution rate but also improves the bioavailability of oxatomide.

View Article: PubMed Central - PubMed

Affiliation: Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo 11790, Egypt.

ABSTRACT
The objective of this study was to evaluate the influence of oxatomide β-cyclodextrin inclusion complex on the physicochemical properties and bioavailability of the drug. Oxatomide β-cyclodextrin solid complex was prepared with equimolar ratio of both oxatomide and β-cyclodextrin in presence or absence of water soluble polymers using different techniques. The coevaporated complex prepared in presence of PVP-K15 showed a prompt drug release and significantly increased % dissolution efficiency (P < 0.05) compared to the pure oxatomide. Moreover, the results of bioavailability evaluation of this complex in rabbits compared to commercial drug product indicated a 73.15% increase in the oral bioavailability of oxatomide. In conclusion, inclusion complex of oxatomide with β-cyclodextrin prepared by coevaporation in presence of PVP-K15 not only results in an enhancement of the oxatomide dissolution rate but also improves the bioavailability of oxatomide.

No MeSH data available.


Related in: MedlinePlus