Limits...
Application of α-aminoisobutyric acid and β-aminoisobutyric acid inhibits pericarp browning of harvested longan fruit.

Wang H, Zhi W, Qu H, Lin H, Jiang Y - Chem Cent J (2015)

Bottom Line: Pericarp browning is a critical problem resulting in reduced commercial value and shelf life of longan fruit.Moreover, exogenous application of AIB and BAIB maintained higher contents of catechin, corilagin, epicatechin and gallocatechin gallate, but lower content of gallic acid compared to the control in the pericarp of longan fruit during storage, which was associated with the oxidation of browning substrate.Pericarp browning was inhibited and storage life of longan fruit was extended effectively by AIB and BAIB treatments with AIB treatment being more significant than BAIB.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650 Guangzhou, China.

ABSTRACT

Background: Pericarp browning is a critical problem resulting in reduced commercial value and shelf life of longan fruit.

Results: Two non-protein amino acids, α-aminoisobutyric acid (AIB) and β-aminoisobutyric acid (BAIB) at 100 and 1 mM were applied to longan fruit prior to storage for up to 8 days at 25 °C respectively. Contents of the major five phenolics (gallic acid, catechin, corilagin, epicatechin and gallocatechin gallate) were assayed by high-performance liquid chromatography (HPLC). Physiological properties related to pericarp browning of longan fruit were investigated during storage. Respiration rate, membrane permeability, malondialdehyde (MDA) content, and activities of polyphenol oxidase (PPO) and peroxidase (POD) were down-regulated by AIB or BAIB treatments, with significantly lower pericarp browning index and higher proportion of edible fruit than the control. Moreover, exogenous application of AIB and BAIB maintained higher contents of catechin, corilagin, epicatechin and gallocatechin gallate, but lower content of gallic acid compared to the control in the pericarp of longan fruit during storage, which was associated with the oxidation of browning substrate.

Conclusions: Pericarp browning was inhibited and storage life of longan fruit was extended effectively by AIB and BAIB treatments with AIB treatment being more significant than BAIB. The findings may provide a new strategy for controlling pericarp browning of harvested longan fruit.

No MeSH data available.


Related in: MedlinePlus

Relative electrolyte leakage (a) and MDA content (b) in pericarp of longan fruit during storage at 25 °C. Longan fruit was treated with water (control), α-aminoisobutyric acid (AIB) or β-aminoisobutyric acid (BAIB). MDA malondialdehyde, FW fresh weight. Values represent the mean ± SE of three replicates
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4595526&req=5

Fig2: Relative electrolyte leakage (a) and MDA content (b) in pericarp of longan fruit during storage at 25 °C. Longan fruit was treated with water (control), α-aminoisobutyric acid (AIB) or β-aminoisobutyric acid (BAIB). MDA malondialdehyde, FW fresh weight. Values represent the mean ± SE of three replicates

Mentions: Membrane permeability reflects senescence and deterioration of plant tissues and is expressed by relative electric conductivity. As shown in Fig. 2a, membrane permeability of longan pericarp increased slightly within the first 4 days and then increased rapidly. The electric conductivities in the ΑΙΒ and BAIB-treated fruit were 32.49 and 39.44 % after 8 days of storage, respectively, while the control fruit had electric conductivity of 52.94 %. ΑΙΒ and BAIB application inhibited significantly the increase of relative electric conductivity (by 38.64 and 25.50 % respectively) at the end of storage.Fig. 2


Application of α-aminoisobutyric acid and β-aminoisobutyric acid inhibits pericarp browning of harvested longan fruit.

Wang H, Zhi W, Qu H, Lin H, Jiang Y - Chem Cent J (2015)

Relative electrolyte leakage (a) and MDA content (b) in pericarp of longan fruit during storage at 25 °C. Longan fruit was treated with water (control), α-aminoisobutyric acid (AIB) or β-aminoisobutyric acid (BAIB). MDA malondialdehyde, FW fresh weight. Values represent the mean ± SE of three replicates
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4595526&req=5

Fig2: Relative electrolyte leakage (a) and MDA content (b) in pericarp of longan fruit during storage at 25 °C. Longan fruit was treated with water (control), α-aminoisobutyric acid (AIB) or β-aminoisobutyric acid (BAIB). MDA malondialdehyde, FW fresh weight. Values represent the mean ± SE of three replicates
Mentions: Membrane permeability reflects senescence and deterioration of plant tissues and is expressed by relative electric conductivity. As shown in Fig. 2a, membrane permeability of longan pericarp increased slightly within the first 4 days and then increased rapidly. The electric conductivities in the ΑΙΒ and BAIB-treated fruit were 32.49 and 39.44 % after 8 days of storage, respectively, while the control fruit had electric conductivity of 52.94 %. ΑΙΒ and BAIB application inhibited significantly the increase of relative electric conductivity (by 38.64 and 25.50 % respectively) at the end of storage.Fig. 2

Bottom Line: Pericarp browning is a critical problem resulting in reduced commercial value and shelf life of longan fruit.Moreover, exogenous application of AIB and BAIB maintained higher contents of catechin, corilagin, epicatechin and gallocatechin gallate, but lower content of gallic acid compared to the control in the pericarp of longan fruit during storage, which was associated with the oxidation of browning substrate.Pericarp browning was inhibited and storage life of longan fruit was extended effectively by AIB and BAIB treatments with AIB treatment being more significant than BAIB.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650 Guangzhou, China.

ABSTRACT

Background: Pericarp browning is a critical problem resulting in reduced commercial value and shelf life of longan fruit.

Results: Two non-protein amino acids, α-aminoisobutyric acid (AIB) and β-aminoisobutyric acid (BAIB) at 100 and 1 mM were applied to longan fruit prior to storage for up to 8 days at 25 °C respectively. Contents of the major five phenolics (gallic acid, catechin, corilagin, epicatechin and gallocatechin gallate) were assayed by high-performance liquid chromatography (HPLC). Physiological properties related to pericarp browning of longan fruit were investigated during storage. Respiration rate, membrane permeability, malondialdehyde (MDA) content, and activities of polyphenol oxidase (PPO) and peroxidase (POD) were down-regulated by AIB or BAIB treatments, with significantly lower pericarp browning index and higher proportion of edible fruit than the control. Moreover, exogenous application of AIB and BAIB maintained higher contents of catechin, corilagin, epicatechin and gallocatechin gallate, but lower content of gallic acid compared to the control in the pericarp of longan fruit during storage, which was associated with the oxidation of browning substrate.

Conclusions: Pericarp browning was inhibited and storage life of longan fruit was extended effectively by AIB and BAIB treatments with AIB treatment being more significant than BAIB. The findings may provide a new strategy for controlling pericarp browning of harvested longan fruit.

No MeSH data available.


Related in: MedlinePlus