Limits...
Wheat WCBP1 encodes a putative copper-binding protein involved in stripe rust resistance and inhibition of leaf senescence.

Li X, Liu T, Chen W, Zhong S, Zhang H, Tang Z, Chang Z, Wang L, Zhang M, Li L, Rao H, Ren Z, Luo P - BMC Plant Biol. (2015)

Bottom Line: We cloned a candidate gene encoding wheat copper-binding protein (WCBP1) by amplifying the polymorphic region, and we mapped WCBP1 to a 0.64 cM genetic interval.Brachypodium, rice, and sorghum have genes and genomic regions syntenic to this region.Sequence analysis suggested that the resistant WCBP1 allele might have resulted from a deletion of 36-bp sequence of the wheat genomic sequence, rather than direct transfer from Th. intermedium. qRT-PCR confirmed that WCBP1 expression changes in response to pathogen infection.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China. sadoneli@gmail.com.

ABSTRACT

Background: Stripe rust, a highly destructive foliar disease of wheat (Triticum aestivum), causes severe losses, which may be accompanied by reduced photosynthetic activity and accelerated leaf senescence.

Methods: We used suppression subtractive hybridization (SSH) to examine the mechanisms of resistance in the resistant wheat line L693 (Reg. No. GP-972, PI 672538), which was derived from a lineage that includes a wide cross between common and Thinopyrum intermedium. Sequencing of an SSH cDNA library identified 112 expressed sequence tags.

Results: In silico mapping placed one of these tags [GenBank: JK972238] on chromosome 1A. Primers based on [GenBank: JK972238] amplified a polymorphic band, which co-segregated with YrL693. We cloned a candidate gene encoding wheat copper-binding protein (WCBP1) by amplifying the polymorphic region, and we mapped WCBP1 to a 0.64 cM genetic interval. Brachypodium, rice, and sorghum have genes and genomic regions syntenic to this region.

Discussion: Sequence analysis suggested that the resistant WCBP1 allele might have resulted from a deletion of 36-bp sequence of the wheat genomic sequence, rather than direct transfer from Th. intermedium. qRT-PCR confirmed that WCBP1 expression changes in response to pathogen infection.

Conclusions: The unique chromosomal location and expression mode of WCBP1 suggested that WCBP1 is the putative candidate gene of YrL693, which was involved in leaf senescence and photosynthesis related to plant responses to stripe rust infection during the grain-filling stage.

No MeSH data available.


Related in: MedlinePlus

Photosynthetic parameters used to assess the different responses of L693 and L661 to Pst inoculation. a, Net photosynthetic rate (Pn); b, intercellular CO2 concentration (Ci); c, stomatal conductance (Gs). The parameters were measured once every 10 days after heading in the field, using a Li-Cor 6400. The disease had fully developed at heading, and 10 plants per genotype were used for these measurements. Bars represent the standard error, and significance was determined using an independent sample t-test. Asterisks represent significant differences as follows: **P ≤0.01 and *P ≤0.05, and Ns indicates no significant difference. Raised asterisks or the Ns label represent the differences in gene expression between L693 and L661 at each time point. Asterisks or the Ns label on the trend line represent differences in gene expression between two adjacent time points in the same genotype
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4595213&req=5

Fig7: Photosynthetic parameters used to assess the different responses of L693 and L661 to Pst inoculation. a, Net photosynthetic rate (Pn); b, intercellular CO2 concentration (Ci); c, stomatal conductance (Gs). The parameters were measured once every 10 days after heading in the field, using a Li-Cor 6400. The disease had fully developed at heading, and 10 plants per genotype were used for these measurements. Bars represent the standard error, and significance was determined using an independent sample t-test. Asterisks represent significant differences as follows: **P ≤0.01 and *P ≤0.05, and Ns indicates no significant difference. Raised asterisks or the Ns label represent the differences in gene expression between L693 and L661 at each time point. Asterisks or the Ns label on the trend line represent differences in gene expression between two adjacent time points in the same genotype

Mentions: Although the net photosynthetic rates (Pn) at all time points were significantly higher (P <0.01) in L693 than L661, these genotypes showed similar trends (Fig. 7). Notably, there were no significant differences (P >0.05) between any two consecutive measurements in L693, whereas changes in L661 were highly significant (P <0.01) (Fig. 7a). At the heading stage, the stomatal conductance (Gs) in L693 was significantly lower than that in L661 (Fig. 7b). The Gs of L693 increased sharply during the early stages and decreased toward the end of the experiment, while the values obtained for L661 declined sharply during the early stages of the experiment and then increased. The intercellular CO2 concentrations (Ci) observed in L693 were significantly lower (P <0.01) than those in L661 at all time points, except at 20 days after heading (Fig. 7c). In L693, there was a notable increase in Ci, whereas this value decreased sharply between heading and 10 days after heading in L661.Fig. 7


Wheat WCBP1 encodes a putative copper-binding protein involved in stripe rust resistance and inhibition of leaf senescence.

Li X, Liu T, Chen W, Zhong S, Zhang H, Tang Z, Chang Z, Wang L, Zhang M, Li L, Rao H, Ren Z, Luo P - BMC Plant Biol. (2015)

Photosynthetic parameters used to assess the different responses of L693 and L661 to Pst inoculation. a, Net photosynthetic rate (Pn); b, intercellular CO2 concentration (Ci); c, stomatal conductance (Gs). The parameters were measured once every 10 days after heading in the field, using a Li-Cor 6400. The disease had fully developed at heading, and 10 plants per genotype were used for these measurements. Bars represent the standard error, and significance was determined using an independent sample t-test. Asterisks represent significant differences as follows: **P ≤0.01 and *P ≤0.05, and Ns indicates no significant difference. Raised asterisks or the Ns label represent the differences in gene expression between L693 and L661 at each time point. Asterisks or the Ns label on the trend line represent differences in gene expression between two adjacent time points in the same genotype
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4595213&req=5

Fig7: Photosynthetic parameters used to assess the different responses of L693 and L661 to Pst inoculation. a, Net photosynthetic rate (Pn); b, intercellular CO2 concentration (Ci); c, stomatal conductance (Gs). The parameters were measured once every 10 days after heading in the field, using a Li-Cor 6400. The disease had fully developed at heading, and 10 plants per genotype were used for these measurements. Bars represent the standard error, and significance was determined using an independent sample t-test. Asterisks represent significant differences as follows: **P ≤0.01 and *P ≤0.05, and Ns indicates no significant difference. Raised asterisks or the Ns label represent the differences in gene expression between L693 and L661 at each time point. Asterisks or the Ns label on the trend line represent differences in gene expression between two adjacent time points in the same genotype
Mentions: Although the net photosynthetic rates (Pn) at all time points were significantly higher (P <0.01) in L693 than L661, these genotypes showed similar trends (Fig. 7). Notably, there were no significant differences (P >0.05) between any two consecutive measurements in L693, whereas changes in L661 were highly significant (P <0.01) (Fig. 7a). At the heading stage, the stomatal conductance (Gs) in L693 was significantly lower than that in L661 (Fig. 7b). The Gs of L693 increased sharply during the early stages and decreased toward the end of the experiment, while the values obtained for L661 declined sharply during the early stages of the experiment and then increased. The intercellular CO2 concentrations (Ci) observed in L693 were significantly lower (P <0.01) than those in L661 at all time points, except at 20 days after heading (Fig. 7c). In L693, there was a notable increase in Ci, whereas this value decreased sharply between heading and 10 days after heading in L661.Fig. 7

Bottom Line: We cloned a candidate gene encoding wheat copper-binding protein (WCBP1) by amplifying the polymorphic region, and we mapped WCBP1 to a 0.64 cM genetic interval.Brachypodium, rice, and sorghum have genes and genomic regions syntenic to this region.Sequence analysis suggested that the resistant WCBP1 allele might have resulted from a deletion of 36-bp sequence of the wheat genomic sequence, rather than direct transfer from Th. intermedium. qRT-PCR confirmed that WCBP1 expression changes in response to pathogen infection.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China. sadoneli@gmail.com.

ABSTRACT

Background: Stripe rust, a highly destructive foliar disease of wheat (Triticum aestivum), causes severe losses, which may be accompanied by reduced photosynthetic activity and accelerated leaf senescence.

Methods: We used suppression subtractive hybridization (SSH) to examine the mechanisms of resistance in the resistant wheat line L693 (Reg. No. GP-972, PI 672538), which was derived from a lineage that includes a wide cross between common and Thinopyrum intermedium. Sequencing of an SSH cDNA library identified 112 expressed sequence tags.

Results: In silico mapping placed one of these tags [GenBank: JK972238] on chromosome 1A. Primers based on [GenBank: JK972238] amplified a polymorphic band, which co-segregated with YrL693. We cloned a candidate gene encoding wheat copper-binding protein (WCBP1) by amplifying the polymorphic region, and we mapped WCBP1 to a 0.64 cM genetic interval. Brachypodium, rice, and sorghum have genes and genomic regions syntenic to this region.

Discussion: Sequence analysis suggested that the resistant WCBP1 allele might have resulted from a deletion of 36-bp sequence of the wheat genomic sequence, rather than direct transfer from Th. intermedium. qRT-PCR confirmed that WCBP1 expression changes in response to pathogen infection.

Conclusions: The unique chromosomal location and expression mode of WCBP1 suggested that WCBP1 is the putative candidate gene of YrL693, which was involved in leaf senescence and photosynthesis related to plant responses to stripe rust infection during the grain-filling stage.

No MeSH data available.


Related in: MedlinePlus