Limits...
Wheat WCBP1 encodes a putative copper-binding protein involved in stripe rust resistance and inhibition of leaf senescence.

Li X, Liu T, Chen W, Zhong S, Zhang H, Tang Z, Chang Z, Wang L, Zhang M, Li L, Rao H, Ren Z, Luo P - BMC Plant Biol. (2015)

Bottom Line: We cloned a candidate gene encoding wheat copper-binding protein (WCBP1) by amplifying the polymorphic region, and we mapped WCBP1 to a 0.64 cM genetic interval.Brachypodium, rice, and sorghum have genes and genomic regions syntenic to this region.Sequence analysis suggested that the resistant WCBP1 allele might have resulted from a deletion of 36-bp sequence of the wheat genomic sequence, rather than direct transfer from Th. intermedium. qRT-PCR confirmed that WCBP1 expression changes in response to pathogen infection.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China. sadoneli@gmail.com.

ABSTRACT

Background: Stripe rust, a highly destructive foliar disease of wheat (Triticum aestivum), causes severe losses, which may be accompanied by reduced photosynthetic activity and accelerated leaf senescence.

Methods: We used suppression subtractive hybridization (SSH) to examine the mechanisms of resistance in the resistant wheat line L693 (Reg. No. GP-972, PI 672538), which was derived from a lineage that includes a wide cross between common and Thinopyrum intermedium. Sequencing of an SSH cDNA library identified 112 expressed sequence tags.

Results: In silico mapping placed one of these tags [GenBank: JK972238] on chromosome 1A. Primers based on [GenBank: JK972238] amplified a polymorphic band, which co-segregated with YrL693. We cloned a candidate gene encoding wheat copper-binding protein (WCBP1) by amplifying the polymorphic region, and we mapped WCBP1 to a 0.64 cM genetic interval. Brachypodium, rice, and sorghum have genes and genomic regions syntenic to this region.

Discussion: Sequence analysis suggested that the resistant WCBP1 allele might have resulted from a deletion of 36-bp sequence of the wheat genomic sequence, rather than direct transfer from Th. intermedium. qRT-PCR confirmed that WCBP1 expression changes in response to pathogen infection.

Conclusions: The unique chromosomal location and expression mode of WCBP1 suggested that WCBP1 is the putative candidate gene of YrL693, which was involved in leaf senescence and photosynthesis related to plant responses to stripe rust infection during the grain-filling stage.

No MeSH data available.


Related in: MedlinePlus

Genetic and comparative genomic linkage map of the candidate gene WCBP1 and YrL693. a Physical bin map of WCPB1; WCBP1 was mapped to the bin C-1BL6-0.32. b Genetic map of WCBP1 with a total length of 1.28 cM on wheat chromosome 1B. The genetic distance in cM is shown on the left and genetic markers are shown on the right. c The consensus SSR map for a total of 3.3 cM of wheat chromosome 1B. d, e, f, Orthologous regions of WCBP1 in Brachypodium distachyon chromosome 3, and Oryza sativa japonica chromosome 10, and Sorghum bicolor chromosome 1, respectively
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4595213&req=5

Fig3: Genetic and comparative genomic linkage map of the candidate gene WCBP1 and YrL693. a Physical bin map of WCPB1; WCBP1 was mapped to the bin C-1BL6-0.32. b Genetic map of WCBP1 with a total length of 1.28 cM on wheat chromosome 1B. The genetic distance in cM is shown on the left and genetic markers are shown on the right. c The consensus SSR map for a total of 3.3 cM of wheat chromosome 1B. d, e, f, Orthologous regions of WCBP1 in Brachypodium distachyon chromosome 3, and Oryza sativa japonica chromosome 10, and Sorghum bicolor chromosome 1, respectively

Mentions: Genomic in situ hybridization (GISH) failed to detect an alien chromosome segment from Th. intermedium in L693 (Additional file 1: Figure S6; Additional file 3: Methods S1). A high-density integrated genetic map was constructed (Fig. 3). The linkage map consisted of nine SSR markers and eight EST-STS markers (Additional file 2: Table S8). The WCBP1 locus fell within a genetic interval of 0.64 cM. WCBP1 co-segregated with the YrL693 locus. Two flanking EST-STS markers, BF474347 and BE443300, were linked to the WCPB1 locus at 0.096 and 0.544 cM, respectively, and mapped to the chromosome 1B bin C–1BL-6-0.32. Therefore, WCBP1 is located in the same chromosomal region as YrL693. The contigs of the two SSR markers Xwmc269-1B and Xcfd65-1B on one side of WCBP1 mapped to wheat chromosomal arm 1BL, whereas those of the seven other SSR markers on the other side of WCBP1 mapped to 1BS according to the published SSR linkage map [20].Fig. 3


Wheat WCBP1 encodes a putative copper-binding protein involved in stripe rust resistance and inhibition of leaf senescence.

Li X, Liu T, Chen W, Zhong S, Zhang H, Tang Z, Chang Z, Wang L, Zhang M, Li L, Rao H, Ren Z, Luo P - BMC Plant Biol. (2015)

Genetic and comparative genomic linkage map of the candidate gene WCBP1 and YrL693. a Physical bin map of WCPB1; WCBP1 was mapped to the bin C-1BL6-0.32. b Genetic map of WCBP1 with a total length of 1.28 cM on wheat chromosome 1B. The genetic distance in cM is shown on the left and genetic markers are shown on the right. c The consensus SSR map for a total of 3.3 cM of wheat chromosome 1B. d, e, f, Orthologous regions of WCBP1 in Brachypodium distachyon chromosome 3, and Oryza sativa japonica chromosome 10, and Sorghum bicolor chromosome 1, respectively
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4595213&req=5

Fig3: Genetic and comparative genomic linkage map of the candidate gene WCBP1 and YrL693. a Physical bin map of WCPB1; WCBP1 was mapped to the bin C-1BL6-0.32. b Genetic map of WCBP1 with a total length of 1.28 cM on wheat chromosome 1B. The genetic distance in cM is shown on the left and genetic markers are shown on the right. c The consensus SSR map for a total of 3.3 cM of wheat chromosome 1B. d, e, f, Orthologous regions of WCBP1 in Brachypodium distachyon chromosome 3, and Oryza sativa japonica chromosome 10, and Sorghum bicolor chromosome 1, respectively
Mentions: Genomic in situ hybridization (GISH) failed to detect an alien chromosome segment from Th. intermedium in L693 (Additional file 1: Figure S6; Additional file 3: Methods S1). A high-density integrated genetic map was constructed (Fig. 3). The linkage map consisted of nine SSR markers and eight EST-STS markers (Additional file 2: Table S8). The WCBP1 locus fell within a genetic interval of 0.64 cM. WCBP1 co-segregated with the YrL693 locus. Two flanking EST-STS markers, BF474347 and BE443300, were linked to the WCPB1 locus at 0.096 and 0.544 cM, respectively, and mapped to the chromosome 1B bin C–1BL-6-0.32. Therefore, WCBP1 is located in the same chromosomal region as YrL693. The contigs of the two SSR markers Xwmc269-1B and Xcfd65-1B on one side of WCBP1 mapped to wheat chromosomal arm 1BL, whereas those of the seven other SSR markers on the other side of WCBP1 mapped to 1BS according to the published SSR linkage map [20].Fig. 3

Bottom Line: We cloned a candidate gene encoding wheat copper-binding protein (WCBP1) by amplifying the polymorphic region, and we mapped WCBP1 to a 0.64 cM genetic interval.Brachypodium, rice, and sorghum have genes and genomic regions syntenic to this region.Sequence analysis suggested that the resistant WCBP1 allele might have resulted from a deletion of 36-bp sequence of the wheat genomic sequence, rather than direct transfer from Th. intermedium. qRT-PCR confirmed that WCBP1 expression changes in response to pathogen infection.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China. sadoneli@gmail.com.

ABSTRACT

Background: Stripe rust, a highly destructive foliar disease of wheat (Triticum aestivum), causes severe losses, which may be accompanied by reduced photosynthetic activity and accelerated leaf senescence.

Methods: We used suppression subtractive hybridization (SSH) to examine the mechanisms of resistance in the resistant wheat line L693 (Reg. No. GP-972, PI 672538), which was derived from a lineage that includes a wide cross between common and Thinopyrum intermedium. Sequencing of an SSH cDNA library identified 112 expressed sequence tags.

Results: In silico mapping placed one of these tags [GenBank: JK972238] on chromosome 1A. Primers based on [GenBank: JK972238] amplified a polymorphic band, which co-segregated with YrL693. We cloned a candidate gene encoding wheat copper-binding protein (WCBP1) by amplifying the polymorphic region, and we mapped WCBP1 to a 0.64 cM genetic interval. Brachypodium, rice, and sorghum have genes and genomic regions syntenic to this region.

Discussion: Sequence analysis suggested that the resistant WCBP1 allele might have resulted from a deletion of 36-bp sequence of the wheat genomic sequence, rather than direct transfer from Th. intermedium. qRT-PCR confirmed that WCBP1 expression changes in response to pathogen infection.

Conclusions: The unique chromosomal location and expression mode of WCBP1 suggested that WCBP1 is the putative candidate gene of YrL693, which was involved in leaf senescence and photosynthesis related to plant responses to stripe rust infection during the grain-filling stage.

No MeSH data available.


Related in: MedlinePlus