Limits...
Wheat WCBP1 encodes a putative copper-binding protein involved in stripe rust resistance and inhibition of leaf senescence.

Li X, Liu T, Chen W, Zhong S, Zhang H, Tang Z, Chang Z, Wang L, Zhang M, Li L, Rao H, Ren Z, Luo P - BMC Plant Biol. (2015)

Bottom Line: We cloned a candidate gene encoding wheat copper-binding protein (WCBP1) by amplifying the polymorphic region, and we mapped WCBP1 to a 0.64 cM genetic interval.Brachypodium, rice, and sorghum have genes and genomic regions syntenic to this region.Sequence analysis suggested that the resistant WCBP1 allele might have resulted from a deletion of 36-bp sequence of the wheat genomic sequence, rather than direct transfer from Th. intermedium. qRT-PCR confirmed that WCBP1 expression changes in response to pathogen infection.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China. sadoneli@gmail.com.

ABSTRACT

Background: Stripe rust, a highly destructive foliar disease of wheat (Triticum aestivum), causes severe losses, which may be accompanied by reduced photosynthetic activity and accelerated leaf senescence.

Methods: We used suppression subtractive hybridization (SSH) to examine the mechanisms of resistance in the resistant wheat line L693 (Reg. No. GP-972, PI 672538), which was derived from a lineage that includes a wide cross between common and Thinopyrum intermedium. Sequencing of an SSH cDNA library identified 112 expressed sequence tags.

Results: In silico mapping placed one of these tags [GenBank: JK972238] on chromosome 1A. Primers based on [GenBank: JK972238] amplified a polymorphic band, which co-segregated with YrL693. We cloned a candidate gene encoding wheat copper-binding protein (WCBP1) by amplifying the polymorphic region, and we mapped WCBP1 to a 0.64 cM genetic interval. Brachypodium, rice, and sorghum have genes and genomic regions syntenic to this region.

Discussion: Sequence analysis suggested that the resistant WCBP1 allele might have resulted from a deletion of 36-bp sequence of the wheat genomic sequence, rather than direct transfer from Th. intermedium. qRT-PCR confirmed that WCBP1 expression changes in response to pathogen infection.

Conclusions: The unique chromosomal location and expression mode of WCBP1 suggested that WCBP1 is the putative candidate gene of YrL693, which was involved in leaf senescence and photosynthesis related to plant responses to stripe rust infection during the grain-filling stage.

No MeSH data available.


Related in: MedlinePlus

Identification of polymorphism between stripe rust-resistant and stripe rust-susceptible genotypes. The Ls36 primer designed from an EST sequence [GenBank: JK972238] produced polymorphic amplicons among the various genotypes. a a 133 bp amplicon was amplified in the susceptible L661 line and its susceptible parents MY11 and CM107. A 97 bp amplicon was amplified in resistant L693 line, resistant sister lines L658, L696, and L699, and their resistant parent, YU25. A 97 bp amplicon was also amplified from YU24, one of the resistant sister lines of YU25. A 106 bp fragment was amplified in all genotypes. b chromosomal localizations of the amplicons that were polymorphic between L693 and L661, with CS i-tetrasomic lines of homoeologous group 1 and ditelosomic lines of wheat chromosome 1B. PCR was performed to map the gene using genomic DNA from the CS and various aneuploids. PCR products were resolved on 6 % polyacrylamide gels. No PCR product was generated from isomic 1B (N1BT1A and N1BT1D) or the ditelosomic 1BS (DT1BS) lines. c Silver-stained polyacrylamide gels showing polymorphic markers generated using the LSc18 primer linked to the stripe rust resistance gene in L693. L661, susceptible parent; L693, resistant parent; R1 and R2, resistant F2 individuals; BR, the resistant F2 DNA pool; H1, H2 and H3, resistant F2 individuals; S1, S2 and S3, susceptible F2 individuals; BS, the susceptible F2 DNA pool. L661, S1, S2, S3 and Bs showed amplification of 173 bp and 200 bp fragments; L693, R1, R2 and BR showed amplification of 164 bp and 173 bp fragments; H1, H2 and H3 showed amplification of all three fragments, indicating heterozygosity
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4595213&req=5

Fig2: Identification of polymorphism between stripe rust-resistant and stripe rust-susceptible genotypes. The Ls36 primer designed from an EST sequence [GenBank: JK972238] produced polymorphic amplicons among the various genotypes. a a 133 bp amplicon was amplified in the susceptible L661 line and its susceptible parents MY11 and CM107. A 97 bp amplicon was amplified in resistant L693 line, resistant sister lines L658, L696, and L699, and their resistant parent, YU25. A 97 bp amplicon was also amplified from YU24, one of the resistant sister lines of YU25. A 106 bp fragment was amplified in all genotypes. b chromosomal localizations of the amplicons that were polymorphic between L693 and L661, with CS i-tetrasomic lines of homoeologous group 1 and ditelosomic lines of wheat chromosome 1B. PCR was performed to map the gene using genomic DNA from the CS and various aneuploids. PCR products were resolved on 6 % polyacrylamide gels. No PCR product was generated from isomic 1B (N1BT1A and N1BT1D) or the ditelosomic 1BS (DT1BS) lines. c Silver-stained polyacrylamide gels showing polymorphic markers generated using the LSc18 primer linked to the stripe rust resistance gene in L693. L661, susceptible parent; L693, resistant parent; R1 and R2, resistant F2 individuals; BR, the resistant F2 DNA pool; H1, H2 and H3, resistant F2 individuals; S1, S2 and S3, susceptible F2 individuals; BS, the susceptible F2 DNA pool. L661, S1, S2, S3 and Bs showed amplification of 173 bp and 200 bp fragments; L693, R1, R2 and BR showed amplification of 164 bp and 173 bp fragments; H1, H2 and H3 showed amplification of all three fragments, indicating heterozygosity

Mentions: Out of 62 primers designed, one primer pair (LS36) (Additional file 2: Table S3) produced polymorphic amplicons between L693 and L661 as well as between the resistant parent YU25 and the susceptible parent MY11 (Fig. 2a). The design of the LS36 primers was from the sequence of [GenBank: JK972238], which we mapped to wheat chromosome 1A by in silico mapping. The L693, L661, YU25 and MY11 lines produced two amplicons, one 106 bp amplicon, which was the same among all genotypes, and a second amplicon that was polymorphic between L693 and L661 and between YU25 and MY11. In L661 and susceptible parents MY11 and CM107, this amplicon was 133 bp, and in the resistant lines L693, L658, L696 and L699, as well as YU25 and sister line YU24, the amplicon was 97 bp. Amplification of genomic DNA from the isomic-tetrasomic and ditelosomic lines (Fig. 2b) revealed that the amplicon common among all lines and CS was absent in the isomic 1A lines (N1AT1B and N1AT1D).Fig. 2


Wheat WCBP1 encodes a putative copper-binding protein involved in stripe rust resistance and inhibition of leaf senescence.

Li X, Liu T, Chen W, Zhong S, Zhang H, Tang Z, Chang Z, Wang L, Zhang M, Li L, Rao H, Ren Z, Luo P - BMC Plant Biol. (2015)

Identification of polymorphism between stripe rust-resistant and stripe rust-susceptible genotypes. The Ls36 primer designed from an EST sequence [GenBank: JK972238] produced polymorphic amplicons among the various genotypes. a a 133 bp amplicon was amplified in the susceptible L661 line and its susceptible parents MY11 and CM107. A 97 bp amplicon was amplified in resistant L693 line, resistant sister lines L658, L696, and L699, and their resistant parent, YU25. A 97 bp amplicon was also amplified from YU24, one of the resistant sister lines of YU25. A 106 bp fragment was amplified in all genotypes. b chromosomal localizations of the amplicons that were polymorphic between L693 and L661, with CS i-tetrasomic lines of homoeologous group 1 and ditelosomic lines of wheat chromosome 1B. PCR was performed to map the gene using genomic DNA from the CS and various aneuploids. PCR products were resolved on 6 % polyacrylamide gels. No PCR product was generated from isomic 1B (N1BT1A and N1BT1D) or the ditelosomic 1BS (DT1BS) lines. c Silver-stained polyacrylamide gels showing polymorphic markers generated using the LSc18 primer linked to the stripe rust resistance gene in L693. L661, susceptible parent; L693, resistant parent; R1 and R2, resistant F2 individuals; BR, the resistant F2 DNA pool; H1, H2 and H3, resistant F2 individuals; S1, S2 and S3, susceptible F2 individuals; BS, the susceptible F2 DNA pool. L661, S1, S2, S3 and Bs showed amplification of 173 bp and 200 bp fragments; L693, R1, R2 and BR showed amplification of 164 bp and 173 bp fragments; H1, H2 and H3 showed amplification of all three fragments, indicating heterozygosity
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4595213&req=5

Fig2: Identification of polymorphism between stripe rust-resistant and stripe rust-susceptible genotypes. The Ls36 primer designed from an EST sequence [GenBank: JK972238] produced polymorphic amplicons among the various genotypes. a a 133 bp amplicon was amplified in the susceptible L661 line and its susceptible parents MY11 and CM107. A 97 bp amplicon was amplified in resistant L693 line, resistant sister lines L658, L696, and L699, and their resistant parent, YU25. A 97 bp amplicon was also amplified from YU24, one of the resistant sister lines of YU25. A 106 bp fragment was amplified in all genotypes. b chromosomal localizations of the amplicons that were polymorphic between L693 and L661, with CS i-tetrasomic lines of homoeologous group 1 and ditelosomic lines of wheat chromosome 1B. PCR was performed to map the gene using genomic DNA from the CS and various aneuploids. PCR products were resolved on 6 % polyacrylamide gels. No PCR product was generated from isomic 1B (N1BT1A and N1BT1D) or the ditelosomic 1BS (DT1BS) lines. c Silver-stained polyacrylamide gels showing polymorphic markers generated using the LSc18 primer linked to the stripe rust resistance gene in L693. L661, susceptible parent; L693, resistant parent; R1 and R2, resistant F2 individuals; BR, the resistant F2 DNA pool; H1, H2 and H3, resistant F2 individuals; S1, S2 and S3, susceptible F2 individuals; BS, the susceptible F2 DNA pool. L661, S1, S2, S3 and Bs showed amplification of 173 bp and 200 bp fragments; L693, R1, R2 and BR showed amplification of 164 bp and 173 bp fragments; H1, H2 and H3 showed amplification of all three fragments, indicating heterozygosity
Mentions: Out of 62 primers designed, one primer pair (LS36) (Additional file 2: Table S3) produced polymorphic amplicons between L693 and L661 as well as between the resistant parent YU25 and the susceptible parent MY11 (Fig. 2a). The design of the LS36 primers was from the sequence of [GenBank: JK972238], which we mapped to wheat chromosome 1A by in silico mapping. The L693, L661, YU25 and MY11 lines produced two amplicons, one 106 bp amplicon, which was the same among all genotypes, and a second amplicon that was polymorphic between L693 and L661 and between YU25 and MY11. In L661 and susceptible parents MY11 and CM107, this amplicon was 133 bp, and in the resistant lines L693, L658, L696 and L699, as well as YU25 and sister line YU24, the amplicon was 97 bp. Amplification of genomic DNA from the isomic-tetrasomic and ditelosomic lines (Fig. 2b) revealed that the amplicon common among all lines and CS was absent in the isomic 1A lines (N1AT1B and N1AT1D).Fig. 2

Bottom Line: We cloned a candidate gene encoding wheat copper-binding protein (WCBP1) by amplifying the polymorphic region, and we mapped WCBP1 to a 0.64 cM genetic interval.Brachypodium, rice, and sorghum have genes and genomic regions syntenic to this region.Sequence analysis suggested that the resistant WCBP1 allele might have resulted from a deletion of 36-bp sequence of the wheat genomic sequence, rather than direct transfer from Th. intermedium. qRT-PCR confirmed that WCBP1 expression changes in response to pathogen infection.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China. sadoneli@gmail.com.

ABSTRACT

Background: Stripe rust, a highly destructive foliar disease of wheat (Triticum aestivum), causes severe losses, which may be accompanied by reduced photosynthetic activity and accelerated leaf senescence.

Methods: We used suppression subtractive hybridization (SSH) to examine the mechanisms of resistance in the resistant wheat line L693 (Reg. No. GP-972, PI 672538), which was derived from a lineage that includes a wide cross between common and Thinopyrum intermedium. Sequencing of an SSH cDNA library identified 112 expressed sequence tags.

Results: In silico mapping placed one of these tags [GenBank: JK972238] on chromosome 1A. Primers based on [GenBank: JK972238] amplified a polymorphic band, which co-segregated with YrL693. We cloned a candidate gene encoding wheat copper-binding protein (WCBP1) by amplifying the polymorphic region, and we mapped WCBP1 to a 0.64 cM genetic interval. Brachypodium, rice, and sorghum have genes and genomic regions syntenic to this region.

Discussion: Sequence analysis suggested that the resistant WCBP1 allele might have resulted from a deletion of 36-bp sequence of the wheat genomic sequence, rather than direct transfer from Th. intermedium. qRT-PCR confirmed that WCBP1 expression changes in response to pathogen infection.

Conclusions: The unique chromosomal location and expression mode of WCBP1 suggested that WCBP1 is the putative candidate gene of YrL693, which was involved in leaf senescence and photosynthesis related to plant responses to stripe rust infection during the grain-filling stage.

No MeSH data available.


Related in: MedlinePlus