Limits...
The cross-sectional association between snacking behaviour and measures of adiposity: the Fenland Study, UK.

O'Connor L, Brage S, Griffin SJ, Wareham NJ, Forouhi NG - Br. J. Nutr. (2015)

Bottom Line: Among normal-weight individuals (BMI<25 kg/m2), each additional snack was inversely associated with obesity measures: lower total body fat in men and women (-0·41 (95 % CI -0·74, -0·07) %, -0·41 (-0·67, -0·15) %, respectively) and waist circumference (-0·52 (-0·90, -0·14) cm) in men.Comparing intakes of snack-type foods showed that participants with BMI≥25 kg/m2 had higher intakes of crisps, sweets, chocolates and ice-creams and lower intakes of yoghurt and nuts compared with normal-weight participants.Improving snack choices could contribute to anti-obesity public health interventions.

View Article: PubMed Central - PubMed

Affiliation: 1MRC Epidemiology Unit,School of Clinical Medicine,Institute of Metabolic Science,University of Cambridge,Cambridge Biomedical Campus,Cambridge CB2 0QQ,UK.

ABSTRACT
Unhealthy dietary behaviours may contribute to obesity along with energy imbalance. Both positive and associations of snacking and BMI have been reported, but the association between snacking and total adiposity or pattern of fat deposition remains unevaluated. The objective of this study was to investigate the associations between snacking frequency and detailed adiposity measurements. A total of 10 092 adults residing in Cambridgeshire, England, self-completed eating pattern snacking frequency, FFQ and physical activity questionnaires. Measurements included anthropometry, body composition using dual-energy X-ray absorptiometry scan and ultrasound and assessment of physical activity energy expenditure using heart rate and movement sensing. Linear regression analyses were conducted adjusted for age, socio-demographics, dietary quality, energy intake, PAEE and screen time by sex and BMI status. Among normal-weight individuals (BMI<25 kg/m2), each additional snack was inversely associated with obesity measures: lower total body fat in men and women (-0·41 (95 % CI -0·74, -0·07) %, -0·41 (-0·67, -0·15) %, respectively) and waist circumference (-0·52 (-0·90, -0·14) cm) in men. In contrast, among the overweight/obese (BMI≥25 kg/m2), there were positive associations: higher waist circumference (0·80 (0·34, 0·28) cm) and subcutaneous fat (0·06 (0·01, 0·110) cm) in women and waist circumference (0·37 (0·00, 0·73) cm) in men. Comparing intakes of snack-type foods showed that participants with BMI≥25 kg/m2 had higher intakes of crisps, sweets, chocolates and ice-creams and lower intakes of yoghurt and nuts compared with normal-weight participants. Adjusting for these foods in a model that included a BMI-snacking interaction term attenuated all the associations to . Snacking frequency may be associated with higher or lower adiposity, with the direction of association being differential by BMI status and dependent on snack food choice. Improving snack choices could contribute to anti-obesity public health interventions.

Show MeSH

Related in: MedlinePlus

The association between snacking frequency (per unit increase) and measures of adiposity by sex and BMI status: The Fenland Study, UK (n 10 092). Data are β-coefficients and 95 % confidence intervals from multiple linear regression analysis. Comparison uses model 2, which is adjusted for age (years), alcohol (units/d), smoking status (current smoker/non-smoker), age at completing full-time education (years), test site (Cambridge, Ely, Wisbech), main meal (frequency/d), light meal (frequency/d), drink-only snack (frequency/d), plasma vitamin C (µmol/l), energy intake (MJ/d), physical activity energy expenditure (kJ/kg per d) and screen time (h). No interaction with BMI was noted between snacking and visceral fat thickness in men. Snacking frequency was estimated using an eating pattern questionnaire reflecting usual eating habit over a 24-h period. Energy intake was estimated using a FFQ (see the ‘Methods’ section).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4594050&req=5

fig1: The association between snacking frequency (per unit increase) and measures of adiposity by sex and BMI status: The Fenland Study, UK (n 10 092). Data are β-coefficients and 95 % confidence intervals from multiple linear regression analysis. Comparison uses model 2, which is adjusted for age (years), alcohol (units/d), smoking status (current smoker/non-smoker), age at completing full-time education (years), test site (Cambridge, Ely, Wisbech), main meal (frequency/d), light meal (frequency/d), drink-only snack (frequency/d), plasma vitamin C (µmol/l), energy intake (MJ/d), physical activity energy expenditure (kJ/kg per d) and screen time (h). No interaction with BMI was noted between snacking and visceral fat thickness in men. Snacking frequency was estimated using an eating pattern questionnaire reflecting usual eating habit over a 24-h period. Energy intake was estimated using a FFQ (see the ‘Methods’ section).

Mentions: Stratified analysis was conducted where an interaction was significant, using model 2. Among normal-weight individuals (BMI<25 kg/m2), there was an inverse association between snacking and body fat percentage in both sexes and between snacking and waist circumference in men (Fig. 1). In contrast, among the overweight or obese subjects (BMI≥25 kg/m2), there was a positive association between snacking frequency and waist circumference and subcutaneous fat thickness in women and with waist circumference in men (Fig. 1).Fig. 1.


The cross-sectional association between snacking behaviour and measures of adiposity: the Fenland Study, UK.

O'Connor L, Brage S, Griffin SJ, Wareham NJ, Forouhi NG - Br. J. Nutr. (2015)

The association between snacking frequency (per unit increase) and measures of adiposity by sex and BMI status: The Fenland Study, UK (n 10 092). Data are β-coefficients and 95 % confidence intervals from multiple linear regression analysis. Comparison uses model 2, which is adjusted for age (years), alcohol (units/d), smoking status (current smoker/non-smoker), age at completing full-time education (years), test site (Cambridge, Ely, Wisbech), main meal (frequency/d), light meal (frequency/d), drink-only snack (frequency/d), plasma vitamin C (µmol/l), energy intake (MJ/d), physical activity energy expenditure (kJ/kg per d) and screen time (h). No interaction with BMI was noted between snacking and visceral fat thickness in men. Snacking frequency was estimated using an eating pattern questionnaire reflecting usual eating habit over a 24-h period. Energy intake was estimated using a FFQ (see the ‘Methods’ section).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4594050&req=5

fig1: The association between snacking frequency (per unit increase) and measures of adiposity by sex and BMI status: The Fenland Study, UK (n 10 092). Data are β-coefficients and 95 % confidence intervals from multiple linear regression analysis. Comparison uses model 2, which is adjusted for age (years), alcohol (units/d), smoking status (current smoker/non-smoker), age at completing full-time education (years), test site (Cambridge, Ely, Wisbech), main meal (frequency/d), light meal (frequency/d), drink-only snack (frequency/d), plasma vitamin C (µmol/l), energy intake (MJ/d), physical activity energy expenditure (kJ/kg per d) and screen time (h). No interaction with BMI was noted between snacking and visceral fat thickness in men. Snacking frequency was estimated using an eating pattern questionnaire reflecting usual eating habit over a 24-h period. Energy intake was estimated using a FFQ (see the ‘Methods’ section).
Mentions: Stratified analysis was conducted where an interaction was significant, using model 2. Among normal-weight individuals (BMI<25 kg/m2), there was an inverse association between snacking and body fat percentage in both sexes and between snacking and waist circumference in men (Fig. 1). In contrast, among the overweight or obese subjects (BMI≥25 kg/m2), there was a positive association between snacking frequency and waist circumference and subcutaneous fat thickness in women and with waist circumference in men (Fig. 1).Fig. 1.

Bottom Line: Among normal-weight individuals (BMI<25 kg/m2), each additional snack was inversely associated with obesity measures: lower total body fat in men and women (-0·41 (95 % CI -0·74, -0·07) %, -0·41 (-0·67, -0·15) %, respectively) and waist circumference (-0·52 (-0·90, -0·14) cm) in men.Comparing intakes of snack-type foods showed that participants with BMI≥25 kg/m2 had higher intakes of crisps, sweets, chocolates and ice-creams and lower intakes of yoghurt and nuts compared with normal-weight participants.Improving snack choices could contribute to anti-obesity public health interventions.

View Article: PubMed Central - PubMed

Affiliation: 1MRC Epidemiology Unit,School of Clinical Medicine,Institute of Metabolic Science,University of Cambridge,Cambridge Biomedical Campus,Cambridge CB2 0QQ,UK.

ABSTRACT
Unhealthy dietary behaviours may contribute to obesity along with energy imbalance. Both positive and associations of snacking and BMI have been reported, but the association between snacking and total adiposity or pattern of fat deposition remains unevaluated. The objective of this study was to investigate the associations between snacking frequency and detailed adiposity measurements. A total of 10 092 adults residing in Cambridgeshire, England, self-completed eating pattern snacking frequency, FFQ and physical activity questionnaires. Measurements included anthropometry, body composition using dual-energy X-ray absorptiometry scan and ultrasound and assessment of physical activity energy expenditure using heart rate and movement sensing. Linear regression analyses were conducted adjusted for age, socio-demographics, dietary quality, energy intake, PAEE and screen time by sex and BMI status. Among normal-weight individuals (BMI<25 kg/m2), each additional snack was inversely associated with obesity measures: lower total body fat in men and women (-0·41 (95 % CI -0·74, -0·07) %, -0·41 (-0·67, -0·15) %, respectively) and waist circumference (-0·52 (-0·90, -0·14) cm) in men. In contrast, among the overweight/obese (BMI≥25 kg/m2), there were positive associations: higher waist circumference (0·80 (0·34, 0·28) cm) and subcutaneous fat (0·06 (0·01, 0·110) cm) in women and waist circumference (0·37 (0·00, 0·73) cm) in men. Comparing intakes of snack-type foods showed that participants with BMI≥25 kg/m2 had higher intakes of crisps, sweets, chocolates and ice-creams and lower intakes of yoghurt and nuts compared with normal-weight participants. Adjusting for these foods in a model that included a BMI-snacking interaction term attenuated all the associations to . Snacking frequency may be associated with higher or lower adiposity, with the direction of association being differential by BMI status and dependent on snack food choice. Improving snack choices could contribute to anti-obesity public health interventions.

Show MeSH
Related in: MedlinePlus