Limits...
A Mechanistic Neural Field Theory of How Anesthesia Suppresses Consciousness: Synaptic Drive Dynamics, Bifurcations, Attractors, and Partial State Equipartitioning.

Hou SP, Haddad WM, Meskin N, Bailey JM - J Math Neurosci (2015)

Bottom Line: Furthermore, we address the more general question of synchronization and partial state equipartitioning of neural activity without mean field assumptions.This is done by focusing on a postulated subset of inhibitory neurons that are not themselves connected to other inhibitory neurons.Finally, several numerical experiments are presented to illustrate the different aspects of the proposed theory.

View Article: PubMed Central - PubMed

Affiliation: A*STAR, Singapore Institute of Manufacturing Technology, Singapore, 638075, Singapore. house@SIMTech.a-star.edu.sg.

ABSTRACT
With the advances in biochemistry, molecular biology, and neurochemistry there has been impressive progress in understanding the molecular properties of anesthetic agents. However, there has been little focus on how the molecular properties of anesthetic agents lead to the observed macroscopic property that defines the anesthetic state, that is, lack of responsiveness to noxious stimuli. In this paper, we use dynamical system theory to develop a mechanistic mean field model for neural activity to study the abrupt transition from consciousness to unconsciousness as the concentration of the anesthetic agent increases. The proposed synaptic drive firing-rate model predicts the conscious-unconscious transition as the applied anesthetic concentration increases, where excitatory neural activity is characterized by a Poincaré-Andronov-Hopf bifurcation with the awake state transitioning to a stable limit cycle and then subsequently to an asymptotically stable unconscious equilibrium state. Furthermore, we address the more general question of synchronization and partial state equipartitioning of neural activity without mean field assumptions. This is done by focusing on a postulated subset of inhibitory neurons that are not themselves connected to other inhibitory neurons. Finally, several numerical experiments are presented to illustrate the different aspects of the proposed theory.

No MeSH data available.


and  versus time for , , , , , , , , , and  with  and
© Copyright Policy - OpenAccess
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4593994&req=5

Fig3: and versus time for , , , , , , , , , and with and

Mentions: First, we consider the two-class mean field model (11) and (12) with a single equilibrium point. Figures 3 and 4 show the case when the equilibrium point is unstable, and hence, the system possesses a stable limit cycle. Fig. 3


A Mechanistic Neural Field Theory of How Anesthesia Suppresses Consciousness: Synaptic Drive Dynamics, Bifurcations, Attractors, and Partial State Equipartitioning.

Hou SP, Haddad WM, Meskin N, Bailey JM - J Math Neurosci (2015)

and  versus time for , , , , , , , , , and  with  and
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4593994&req=5

Fig3: and versus time for , , , , , , , , , and with and
Mentions: First, we consider the two-class mean field model (11) and (12) with a single equilibrium point. Figures 3 and 4 show the case when the equilibrium point is unstable, and hence, the system possesses a stable limit cycle. Fig. 3

Bottom Line: Furthermore, we address the more general question of synchronization and partial state equipartitioning of neural activity without mean field assumptions.This is done by focusing on a postulated subset of inhibitory neurons that are not themselves connected to other inhibitory neurons.Finally, several numerical experiments are presented to illustrate the different aspects of the proposed theory.

View Article: PubMed Central - PubMed

Affiliation: A*STAR, Singapore Institute of Manufacturing Technology, Singapore, 638075, Singapore. house@SIMTech.a-star.edu.sg.

ABSTRACT
With the advances in biochemistry, molecular biology, and neurochemistry there has been impressive progress in understanding the molecular properties of anesthetic agents. However, there has been little focus on how the molecular properties of anesthetic agents lead to the observed macroscopic property that defines the anesthetic state, that is, lack of responsiveness to noxious stimuli. In this paper, we use dynamical system theory to develop a mechanistic mean field model for neural activity to study the abrupt transition from consciousness to unconsciousness as the concentration of the anesthetic agent increases. The proposed synaptic drive firing-rate model predicts the conscious-unconscious transition as the applied anesthetic concentration increases, where excitatory neural activity is characterized by a Poincaré-Andronov-Hopf bifurcation with the awake state transitioning to a stable limit cycle and then subsequently to an asymptotically stable unconscious equilibrium state. Furthermore, we address the more general question of synchronization and partial state equipartitioning of neural activity without mean field assumptions. This is done by focusing on a postulated subset of inhibitory neurons that are not themselves connected to other inhibitory neurons. Finally, several numerical experiments are presented to illustrate the different aspects of the proposed theory.

No MeSH data available.