Limits...
Synthesis of BiPO4/Bi2S3 Heterojunction with Enhanced Photocatalytic Activity under Visible-Light Irradiation.

Lu M, Yuan G, Wang Z, Wang Y, Guo J - Nanoscale Res Lett (2015)

Bottom Line: It was found that BiPO4 was regular rods with smooth surfaces.The enhanced photocatalytic performance could be ascribed to synergistic effect of BiPO4/Bi2S3 heterojunction, in which the attached Bi2S3 nanoparticles could improve visible-light absorption and the BiPO4/Bi2S3 heterojunction suppressed the recombination of photogenerated electron-hole pairs.Our work suggested that BiPO4/Bi2S3 heterojunction could be a potential photocatalyst under visible light.

View Article: PubMed Central - PubMed

Affiliation: College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Soochow, 215123, China.

ABSTRACT
BiPO4/Bi2S3 photocatalysts were successfully synthesized by a simple two-step hydrothermal process, which involved the initial formation of BiPO4 rod and then the attachment of Bi2S3 through ion exchange. The as-synthesized products were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and UV-vis diffuse reflectance spectra (UV-vis DRS). It was found that BiPO4 was regular rods with smooth surfaces. However, BiPO4/Bi2S3 heterojunction had a rough surface, which could be attributed to the attachment of Bi2S3 on the surface of BiPO4 rods. The BiPO4/Bi2S3 composite exhibited better photocatalytic performance than that of pure BiPO4 and Bi2S3 for the degradation of methylene blue (MB) and Rhodamine B (RhB) under visible light. The enhanced photocatalytic performance could be ascribed to synergistic effect of BiPO4/Bi2S3 heterojunction, in which the attached Bi2S3 nanoparticles could improve visible-light absorption and the BiPO4/Bi2S3 heterojunction suppressed the recombination of photogenerated electron-hole pairs. Our work suggested that BiPO4/Bi2S3 heterojunction could be a potential photocatalyst under visible light.

No MeSH data available.


SEM images of pure BiPO4 (a), BB-1 (b), BB-2 (c) and BB-3 (d)
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4593991&req=5

Fig3: SEM images of pure BiPO4 (a), BB-1 (b), BB-2 (c) and BB-3 (d)

Mentions: Figure 3 shows the SEM images of BiPO4 and BiPO4/Bi2S3 composites. It can be seen from Fig. 3a that pure BiPO4 shows regular rod shape with diameter of 200–400 nm and the length of 500–2000 nm. It should be noted that these rods have smooth surfaces. Figure 3b–d shows the SEM images of different BiPO4/Bi2S3 composites. Compared with pure BiPO4, the surfaces of BiPO4/Bi2S3 composites become rough. Furthermore, with the increasing amount of additive thiourea, more Bi2S3 nanoparticles can be observed on the surface of BiPO4 rods gradually, which is also consistent to XRD results.Fig. 3


Synthesis of BiPO4/Bi2S3 Heterojunction with Enhanced Photocatalytic Activity under Visible-Light Irradiation.

Lu M, Yuan G, Wang Z, Wang Y, Guo J - Nanoscale Res Lett (2015)

SEM images of pure BiPO4 (a), BB-1 (b), BB-2 (c) and BB-3 (d)
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4593991&req=5

Fig3: SEM images of pure BiPO4 (a), BB-1 (b), BB-2 (c) and BB-3 (d)
Mentions: Figure 3 shows the SEM images of BiPO4 and BiPO4/Bi2S3 composites. It can be seen from Fig. 3a that pure BiPO4 shows regular rod shape with diameter of 200–400 nm and the length of 500–2000 nm. It should be noted that these rods have smooth surfaces. Figure 3b–d shows the SEM images of different BiPO4/Bi2S3 composites. Compared with pure BiPO4, the surfaces of BiPO4/Bi2S3 composites become rough. Furthermore, with the increasing amount of additive thiourea, more Bi2S3 nanoparticles can be observed on the surface of BiPO4 rods gradually, which is also consistent to XRD results.Fig. 3

Bottom Line: It was found that BiPO4 was regular rods with smooth surfaces.The enhanced photocatalytic performance could be ascribed to synergistic effect of BiPO4/Bi2S3 heterojunction, in which the attached Bi2S3 nanoparticles could improve visible-light absorption and the BiPO4/Bi2S3 heterojunction suppressed the recombination of photogenerated electron-hole pairs.Our work suggested that BiPO4/Bi2S3 heterojunction could be a potential photocatalyst under visible light.

View Article: PubMed Central - PubMed

Affiliation: College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Soochow, 215123, China.

ABSTRACT
BiPO4/Bi2S3 photocatalysts were successfully synthesized by a simple two-step hydrothermal process, which involved the initial formation of BiPO4 rod and then the attachment of Bi2S3 through ion exchange. The as-synthesized products were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and UV-vis diffuse reflectance spectra (UV-vis DRS). It was found that BiPO4 was regular rods with smooth surfaces. However, BiPO4/Bi2S3 heterojunction had a rough surface, which could be attributed to the attachment of Bi2S3 on the surface of BiPO4 rods. The BiPO4/Bi2S3 composite exhibited better photocatalytic performance than that of pure BiPO4 and Bi2S3 for the degradation of methylene blue (MB) and Rhodamine B (RhB) under visible light. The enhanced photocatalytic performance could be ascribed to synergistic effect of BiPO4/Bi2S3 heterojunction, in which the attached Bi2S3 nanoparticles could improve visible-light absorption and the BiPO4/Bi2S3 heterojunction suppressed the recombination of photogenerated electron-hole pairs. Our work suggested that BiPO4/Bi2S3 heterojunction could be a potential photocatalyst under visible light.

No MeSH data available.