Limits...
Synthesis of BiPO4/Bi2S3 Heterojunction with Enhanced Photocatalytic Activity under Visible-Light Irradiation.

Lu M, Yuan G, Wang Z, Wang Y, Guo J - Nanoscale Res Lett (2015)

Bottom Line: It was found that BiPO4 was regular rods with smooth surfaces.The enhanced photocatalytic performance could be ascribed to synergistic effect of BiPO4/Bi2S3 heterojunction, in which the attached Bi2S3 nanoparticles could improve visible-light absorption and the BiPO4/Bi2S3 heterojunction suppressed the recombination of photogenerated electron-hole pairs.Our work suggested that BiPO4/Bi2S3 heterojunction could be a potential photocatalyst under visible light.

View Article: PubMed Central - PubMed

Affiliation: College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Soochow, 215123, China.

ABSTRACT
BiPO4/Bi2S3 photocatalysts were successfully synthesized by a simple two-step hydrothermal process, which involved the initial formation of BiPO4 rod and then the attachment of Bi2S3 through ion exchange. The as-synthesized products were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and UV-vis diffuse reflectance spectra (UV-vis DRS). It was found that BiPO4 was regular rods with smooth surfaces. However, BiPO4/Bi2S3 heterojunction had a rough surface, which could be attributed to the attachment of Bi2S3 on the surface of BiPO4 rods. The BiPO4/Bi2S3 composite exhibited better photocatalytic performance than that of pure BiPO4 and Bi2S3 for the degradation of methylene blue (MB) and Rhodamine B (RhB) under visible light. The enhanced photocatalytic performance could be ascribed to synergistic effect of BiPO4/Bi2S3 heterojunction, in which the attached Bi2S3 nanoparticles could improve visible-light absorption and the BiPO4/Bi2S3 heterojunction suppressed the recombination of photogenerated electron-hole pairs. Our work suggested that BiPO4/Bi2S3 heterojunction could be a potential photocatalyst under visible light.

No MeSH data available.


XRD patterns of different as-prepared samples
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4593991&req=5

Fig1: XRD patterns of different as-prepared samples

Mentions: Figure 1 shows the XRD patterns of BiPO4 and BiPO4/Bi2S3 heterojunction with different Bi2S3 contents. In the pure BiPO4, all the diffraction peaks are well matched with the monoclinic phase of BiPO4 (JCPDS File No. 89–0287), indicating that the as-prepared BiPO4 has the high purity. On the other hand, the BiPO4/Bi2S3 composites exhibit a mixture of two crystalline phases. One can be identified as BiPO4, and the others originate from rutile Bi2S3 [25]. Furthermore, the intensities of corresponding to diffraction peaks of Bi2S3 gradually strengthen along with the increase of the Bi2S3 content, while those of BiPO4 simultaneously weaken. No other characteristic peaks of impurity are detected, suggesting that BiPO4/Bi2S3 composites are only composed of BiPO4 and Bi2S3 phases.Fig. 1


Synthesis of BiPO4/Bi2S3 Heterojunction with Enhanced Photocatalytic Activity under Visible-Light Irradiation.

Lu M, Yuan G, Wang Z, Wang Y, Guo J - Nanoscale Res Lett (2015)

XRD patterns of different as-prepared samples
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4593991&req=5

Fig1: XRD patterns of different as-prepared samples
Mentions: Figure 1 shows the XRD patterns of BiPO4 and BiPO4/Bi2S3 heterojunction with different Bi2S3 contents. In the pure BiPO4, all the diffraction peaks are well matched with the monoclinic phase of BiPO4 (JCPDS File No. 89–0287), indicating that the as-prepared BiPO4 has the high purity. On the other hand, the BiPO4/Bi2S3 composites exhibit a mixture of two crystalline phases. One can be identified as BiPO4, and the others originate from rutile Bi2S3 [25]. Furthermore, the intensities of corresponding to diffraction peaks of Bi2S3 gradually strengthen along with the increase of the Bi2S3 content, while those of BiPO4 simultaneously weaken. No other characteristic peaks of impurity are detected, suggesting that BiPO4/Bi2S3 composites are only composed of BiPO4 and Bi2S3 phases.Fig. 1

Bottom Line: It was found that BiPO4 was regular rods with smooth surfaces.The enhanced photocatalytic performance could be ascribed to synergistic effect of BiPO4/Bi2S3 heterojunction, in which the attached Bi2S3 nanoparticles could improve visible-light absorption and the BiPO4/Bi2S3 heterojunction suppressed the recombination of photogenerated electron-hole pairs.Our work suggested that BiPO4/Bi2S3 heterojunction could be a potential photocatalyst under visible light.

View Article: PubMed Central - PubMed

Affiliation: College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Soochow, 215123, China.

ABSTRACT
BiPO4/Bi2S3 photocatalysts were successfully synthesized by a simple two-step hydrothermal process, which involved the initial formation of BiPO4 rod and then the attachment of Bi2S3 through ion exchange. The as-synthesized products were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and UV-vis diffuse reflectance spectra (UV-vis DRS). It was found that BiPO4 was regular rods with smooth surfaces. However, BiPO4/Bi2S3 heterojunction had a rough surface, which could be attributed to the attachment of Bi2S3 on the surface of BiPO4 rods. The BiPO4/Bi2S3 composite exhibited better photocatalytic performance than that of pure BiPO4 and Bi2S3 for the degradation of methylene blue (MB) and Rhodamine B (RhB) under visible light. The enhanced photocatalytic performance could be ascribed to synergistic effect of BiPO4/Bi2S3 heterojunction, in which the attached Bi2S3 nanoparticles could improve visible-light absorption and the BiPO4/Bi2S3 heterojunction suppressed the recombination of photogenerated electron-hole pairs. Our work suggested that BiPO4/Bi2S3 heterojunction could be a potential photocatalyst under visible light.

No MeSH data available.