Limits...
Conductivity of PEDOT:PSS on Spin-Coated and Drop Cast Nanofibrillar Cellulose Thin Films.

Valtakari D, Liu J, Kumar V, Xu C, Toivakka M, Saarinen JJ - Nanoscale Res Lett (2015)

Bottom Line: Aqueous dispersion of conductive polymer poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) ( PSS) was deposited on spin-coated and drop cast nanofibrillar cellulose (NFC)-glycerol (G) matrix on a glass substrate.The effects of annealing temperature, the coating method of NFC-G, and the coating time intervals on the electrical performance of the PSS were characterized.PSS on drop cast NFC-G resulted in 3 orders of magnitude increase in the electrical conductivity compared to reference PSS film on a reference glass substrate, whereas the optical transmission was only slightly decreased.

View Article: PubMed Central - PubMed

Affiliation: Laboratory of Paper Coating and Converting, Center for Functional Materials (FunMat), Abo Akademi University, Porthansgatan 3, 20500, Åbo/Turku, Finland. dimitar.valtakari@abo.fi.

ABSTRACT

Unlabelled: Aqueous dispersion of conductive polymer poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (

Pedot: PSS) was deposited on spin-coated and drop cast nanofibrillar cellulose (NFC)-glycerol (G) matrix on a glass substrate. A thin glycerol film was utilized on plasma-treated glass substrate to provide adequate adhesion for the NFC-glycerol (NFC-G) film. The effects of annealing temperature, the coating method of NFC-G, and the coating time intervals on the electrical performance of the

Pedot: PSS were characterized.

Pedot: PSS on drop cast NFC-G resulted in 3 orders of magnitude increase in the electrical conductivity compared to reference

Pedot: PSS film on a reference glass substrate, whereas the optical transmission was only slightly decreased. The results point out the importance of the interaction between the

Pedot: PSS and the NFC-G for the electrical and barrier properties for thin film electronics applications.

No MeSH data available.


Related in: MedlinePlus

Optical transmission of PEDOT:PSS on reference glass, spin-coated NFC-G, and drop cast NFC-G coatings annealed at 130 °C
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4593988&req=5

Fig8: Optical transmission of PEDOT:PSS on reference glass, spin-coated NFC-G, and drop cast NFC-G coatings annealed at 130 °C

Mentions: The optical transmission results are in Fig. 8 for the spin-coated PEDOT:PSS on reference glass and on spin-coated and drop cast NFC-G. The spin-coated sample data overlaps with that of the reference with transmission varying from approximately 94 to 84 % for the wavelength range 350–850 nm. Both maintain the same light blue color shade, and the components in the NFC-G layer seem not to affect the transmission. This is in accordance by the dense texture and strong barrier properties of the NFC-G layer observed in the SEM and the contact angle measurements. On the other hand, the PEDOT:PSS on drop cast NFC-G has 1 to 8 points lower transmission across the measured spectral range of 350–850 nm. The transmission loss is a fairly small sacrifice in comparison to the enhanced conductivity increase of three orders of magnitude. The transmission loss is caused by a small color shift towards deeper blue as a result of the PEDOT:PSS absorption into the NFC-G layer. The PEDOT:PSS liquid dispersion consists of more than 95 % water that is easily absorbed by the drop cast NFC-G layer as seen in the contact angle measurement results in Fig. 7. The same applies to the PEDOT:PSS liquid dispersion. The submicron thickness of the colorless and semitransparent NFC-G film has a minor impact on the transmission drop. Transmission results for samples annealed at temperatures from 60 to 130 °C were rather similar, and the results stayed within one percentage point for all spin-coated samples and within 3 percentage points for all drop cast samples.Fig. 8


Conductivity of PEDOT:PSS on Spin-Coated and Drop Cast Nanofibrillar Cellulose Thin Films.

Valtakari D, Liu J, Kumar V, Xu C, Toivakka M, Saarinen JJ - Nanoscale Res Lett (2015)

Optical transmission of PEDOT:PSS on reference glass, spin-coated NFC-G, and drop cast NFC-G coatings annealed at 130 °C
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4593988&req=5

Fig8: Optical transmission of PEDOT:PSS on reference glass, spin-coated NFC-G, and drop cast NFC-G coatings annealed at 130 °C
Mentions: The optical transmission results are in Fig. 8 for the spin-coated PEDOT:PSS on reference glass and on spin-coated and drop cast NFC-G. The spin-coated sample data overlaps with that of the reference with transmission varying from approximately 94 to 84 % for the wavelength range 350–850 nm. Both maintain the same light blue color shade, and the components in the NFC-G layer seem not to affect the transmission. This is in accordance by the dense texture and strong barrier properties of the NFC-G layer observed in the SEM and the contact angle measurements. On the other hand, the PEDOT:PSS on drop cast NFC-G has 1 to 8 points lower transmission across the measured spectral range of 350–850 nm. The transmission loss is a fairly small sacrifice in comparison to the enhanced conductivity increase of three orders of magnitude. The transmission loss is caused by a small color shift towards deeper blue as a result of the PEDOT:PSS absorption into the NFC-G layer. The PEDOT:PSS liquid dispersion consists of more than 95 % water that is easily absorbed by the drop cast NFC-G layer as seen in the contact angle measurement results in Fig. 7. The same applies to the PEDOT:PSS liquid dispersion. The submicron thickness of the colorless and semitransparent NFC-G film has a minor impact on the transmission drop. Transmission results for samples annealed at temperatures from 60 to 130 °C were rather similar, and the results stayed within one percentage point for all spin-coated samples and within 3 percentage points for all drop cast samples.Fig. 8

Bottom Line: Aqueous dispersion of conductive polymer poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) ( PSS) was deposited on spin-coated and drop cast nanofibrillar cellulose (NFC)-glycerol (G) matrix on a glass substrate.The effects of annealing temperature, the coating method of NFC-G, and the coating time intervals on the electrical performance of the PSS were characterized.PSS on drop cast NFC-G resulted in 3 orders of magnitude increase in the electrical conductivity compared to reference PSS film on a reference glass substrate, whereas the optical transmission was only slightly decreased.

View Article: PubMed Central - PubMed

Affiliation: Laboratory of Paper Coating and Converting, Center for Functional Materials (FunMat), Abo Akademi University, Porthansgatan 3, 20500, Åbo/Turku, Finland. dimitar.valtakari@abo.fi.

ABSTRACT

Unlabelled: Aqueous dispersion of conductive polymer poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (

Pedot: PSS) was deposited on spin-coated and drop cast nanofibrillar cellulose (NFC)-glycerol (G) matrix on a glass substrate. A thin glycerol film was utilized on plasma-treated glass substrate to provide adequate adhesion for the NFC-glycerol (NFC-G) film. The effects of annealing temperature, the coating method of NFC-G, and the coating time intervals on the electrical performance of the

Pedot: PSS were characterized.

Pedot: PSS on drop cast NFC-G resulted in 3 orders of magnitude increase in the electrical conductivity compared to reference

Pedot: PSS film on a reference glass substrate, whereas the optical transmission was only slightly decreased. The results point out the importance of the interaction between the

Pedot: PSS and the NFC-G for the electrical and barrier properties for thin film electronics applications.

No MeSH data available.


Related in: MedlinePlus