Limits...
Making better maize plants for sustainable grain production in a changing climate.

Gong F, Wu X, Zhang H, Chen Y, Wang W - Front Plant Sci (2015)

Bottom Line: Recent achievements in genomics, proteomics, and metabolomics have provided an unprecedented opportunity to make better maize.In this paper, we discuss the current challenges and potential of maize production, particularly in China.This will facilitate targeted maize improvement through a conventional breeding program combined with molecular techniques.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural University , Zhengzhou, China.

ABSTRACT
Achieving grain supply security with limited arable land is a major challenge in the twenty-first century, owing to the changing climate and increasing global population. Maize plays an increasingly vital role in global grain production. As a C4 plant, maize has a high yield potential. Maize is predicted to become the number one cereal in the world by 2020. However, maize production has plateaued in many countries, and hybrid and production technologies have been fully exploited. Thus, there is an urgent need to shape maize traits and architectures for increased stress tolerance and higher yield in a changing climate. Recent achievements in genomics, proteomics, and metabolomics have provided an unprecedented opportunity to make better maize. In this paper, we discuss the current challenges and potential of maize production, particularly in China. We also highlight the need for enhancing maize tolerance to drought and heat waves, summarize the elite shoot and root traits and phenotypes, and propose an ideotype for sustainable maize production in a changing climate. This will facilitate targeted maize improvement through a conventional breeding program combined with molecular techniques.

No MeSH data available.


Related in: MedlinePlus

Changes in maize yield from 1960 to 2014 in China, India, and the United States. (A) Average annual production of maize, rice, and wheat in China. (B) Comparison of maize yield per unit area among China, India, and the United States. Data were retrieved at: http://www.indexmundi.com/.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4593952&req=5

Figure 1: Changes in maize yield from 1960 to 2014 in China, India, and the United States. (A) Average annual production of maize, rice, and wheat in China. (B) Comparison of maize yield per unit area among China, India, and the United States. Data were retrieved at: http://www.indexmundi.com/.

Mentions: Maize originated in the highlands of Mexico approximately 8,700 years ago (Piperno et al., 2009) and then spread to the Americas, Europe, and Asia primarily via trade networks. Maize is currently the second most plentiful crop globally (Ort and Long, 2014) and the largest crop produced in China, as a result of both larger planting area and greater yield (Figure 1A). Maize is predicted to surpass both wheat and rice to become the number one crop globally by 2020 (Jones, 2009). Theoretically, as a C4 plant, maize has a higher yield potential than wheat and rice. The maize grain yield per unit of land could be increased in developing countries. For example, maize yield per unit area in China is equivalent to about 2/3 of that in the United States, even lower in India (Figure 1B). As stated in the “National Grain Security and Mid- and Long-Term Planning Framework (2008–2020)” of China, a 50 billion kg increase in grain production is required by 2020 to ensure adequate grain supply, and maize will contribute 65% of this increased grain yield. Therefore, maize will play an increasingly vital role in grain production in China and worldwide.


Making better maize plants for sustainable grain production in a changing climate.

Gong F, Wu X, Zhang H, Chen Y, Wang W - Front Plant Sci (2015)

Changes in maize yield from 1960 to 2014 in China, India, and the United States. (A) Average annual production of maize, rice, and wheat in China. (B) Comparison of maize yield per unit area among China, India, and the United States. Data were retrieved at: http://www.indexmundi.com/.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4593952&req=5

Figure 1: Changes in maize yield from 1960 to 2014 in China, India, and the United States. (A) Average annual production of maize, rice, and wheat in China. (B) Comparison of maize yield per unit area among China, India, and the United States. Data were retrieved at: http://www.indexmundi.com/.
Mentions: Maize originated in the highlands of Mexico approximately 8,700 years ago (Piperno et al., 2009) and then spread to the Americas, Europe, and Asia primarily via trade networks. Maize is currently the second most plentiful crop globally (Ort and Long, 2014) and the largest crop produced in China, as a result of both larger planting area and greater yield (Figure 1A). Maize is predicted to surpass both wheat and rice to become the number one crop globally by 2020 (Jones, 2009). Theoretically, as a C4 plant, maize has a higher yield potential than wheat and rice. The maize grain yield per unit of land could be increased in developing countries. For example, maize yield per unit area in China is equivalent to about 2/3 of that in the United States, even lower in India (Figure 1B). As stated in the “National Grain Security and Mid- and Long-Term Planning Framework (2008–2020)” of China, a 50 billion kg increase in grain production is required by 2020 to ensure adequate grain supply, and maize will contribute 65% of this increased grain yield. Therefore, maize will play an increasingly vital role in grain production in China and worldwide.

Bottom Line: Recent achievements in genomics, proteomics, and metabolomics have provided an unprecedented opportunity to make better maize.In this paper, we discuss the current challenges and potential of maize production, particularly in China.This will facilitate targeted maize improvement through a conventional breeding program combined with molecular techniques.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural University , Zhengzhou, China.

ABSTRACT
Achieving grain supply security with limited arable land is a major challenge in the twenty-first century, owing to the changing climate and increasing global population. Maize plays an increasingly vital role in global grain production. As a C4 plant, maize has a high yield potential. Maize is predicted to become the number one cereal in the world by 2020. However, maize production has plateaued in many countries, and hybrid and production technologies have been fully exploited. Thus, there is an urgent need to shape maize traits and architectures for increased stress tolerance and higher yield in a changing climate. Recent achievements in genomics, proteomics, and metabolomics have provided an unprecedented opportunity to make better maize. In this paper, we discuss the current challenges and potential of maize production, particularly in China. We also highlight the need for enhancing maize tolerance to drought and heat waves, summarize the elite shoot and root traits and phenotypes, and propose an ideotype for sustainable maize production in a changing climate. This will facilitate targeted maize improvement through a conventional breeding program combined with molecular techniques.

No MeSH data available.


Related in: MedlinePlus