Limits...
Under What Circumstances Do Wood Products from Native Forests Benefit Climate Change Mitigation?

Keith H, Lindenmayer D, Macintosh A, Mackey B - PLoS ONE (2015)

Bottom Line: Conservation of native forests results in an immediate and substantial reduction in net emissions relative to a reference case of commercial harvesting.International forest-related policies, including negotiations under the UNFCCC, have failed to recognize fully the mitigation value of native forest conservation.Our analyses provide evidence for decision-making about the circumstances under which forest management provides mitigation benefits.

View Article: PubMed Central - PubMed

Affiliation: Fenner School of Environment and Society, The Australian National University, Canberra, ACT, Australia.

ABSTRACT
Climate change mitigation benefits from the land sector are not being fully realised because of uncertainty and controversy about the role of native forest management. The dominant policy view, as stated in the IPCC's Fifth Assessment Report, is that sustainable forest harvesting yielding wood products, generates the largest mitigation benefit. We demonstrate that changing native forest management from commercial harvesting to conservation can make an important contribution to mitigation. Conservation of native forests results in an immediate and substantial reduction in net emissions relative to a reference case of commercial harvesting. We calibrated models to simulate scenarios of native forest management for two Australian case studies: mixed-eucalypt in New South Wales and Mountain Ash in Victoria. Carbon stocks in the harvested forest included forest biomass, wood and paper products, waste in landfill, and bioenergy that substituted for fossil fuel energy. The conservation forest included forest biomass, and subtracted stocks for the foregone products that were substituted by non-wood products or plantation products. Total carbon stocks were lower in harvested forest than in conservation forest in both case studies over the 100-year simulation period. We tested a range of potential parameter values reported in the literature: none could increase the combined carbon stock in products, slash, landfill and substitution sufficiently to exceed the increase in carbon stock due to changing management of native forest to conservation. The key parameters determining carbon stock change under different forest management scenarios are those affecting accumulation of carbon in forest biomass, rather than parameters affecting transfers among wood products. This analysis helps prioritise mitigation activities to focus on maximising forest biomass. International forest-related policies, including negotiations under the UNFCCC, have failed to recognize fully the mitigation value of native forest conservation. Our analyses provide evidence for decision-making about the circumstances under which forest management provides mitigation benefits.

No MeSH data available.


Regional average carbon stocks simulated over 100 years in South Coast mixed native eucalypt forest.Simulations were run for the reference case of current harvested forest (A), and four scenarios of forest management; scenario (1) maximum forest harvest production (B), scenario (2a) conservation forest plus non-wood substitution (C), scenario (2b) conservation forest plus plantation substitution (D), and scenario (2c) conservation forest plus existing plantations (E). All biomass pools in the harvested forest system were included, both on- and off-site. Carbon stock in harvested forest included above-and below-ground living and dead biomass. Carbon stocks shown for pine and eucalypt plantations included forest biomass living and dead, wood and paper products and landfill.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4593608&req=5

pone.0139640.g002: Regional average carbon stocks simulated over 100 years in South Coast mixed native eucalypt forest.Simulations were run for the reference case of current harvested forest (A), and four scenarios of forest management; scenario (1) maximum forest harvest production (B), scenario (2a) conservation forest plus non-wood substitution (C), scenario (2b) conservation forest plus plantation substitution (D), and scenario (2c) conservation forest plus existing plantations (E). All biomass pools in the harvested forest system were included, both on- and off-site. Carbon stock in harvested forest included above-and below-ground living and dead biomass. Carbon stocks shown for pine and eucalypt plantations included forest biomass living and dead, wood and paper products and landfill.

Mentions: The simulation of changes in carbon stocks under current native forest management (reference scenario) was calculated at the local scale for the logged area on a rotation of 70 years (Fig A (A) in S3 Appendix), for the net harvested area on a return time of 20 years (a new selection of trees is harvested from the coupe after 20 years) (Fig A (B) in S3 Appendix), and at the regional scale as an average across the landscape (Fig 2). In the simulation of the average carbon stock across the region over a 100 year time period, the area under the curve represents the cumulative carbon stock in the forest system over time (Fig 2). Identifying the carbon stocks in each type of harvested area in this way provided an understanding of the dynamics over time and the mosaic of areas aggregated at the landscape scale. The simulated carbon stock change from our model was compared with modelled outputs from FCNSW [13] and productivity data reported for the species (Table A in S3 Appendix).


Under What Circumstances Do Wood Products from Native Forests Benefit Climate Change Mitigation?

Keith H, Lindenmayer D, Macintosh A, Mackey B - PLoS ONE (2015)

Regional average carbon stocks simulated over 100 years in South Coast mixed native eucalypt forest.Simulations were run for the reference case of current harvested forest (A), and four scenarios of forest management; scenario (1) maximum forest harvest production (B), scenario (2a) conservation forest plus non-wood substitution (C), scenario (2b) conservation forest plus plantation substitution (D), and scenario (2c) conservation forest plus existing plantations (E). All biomass pools in the harvested forest system were included, both on- and off-site. Carbon stock in harvested forest included above-and below-ground living and dead biomass. Carbon stocks shown for pine and eucalypt plantations included forest biomass living and dead, wood and paper products and landfill.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4593608&req=5

pone.0139640.g002: Regional average carbon stocks simulated over 100 years in South Coast mixed native eucalypt forest.Simulations were run for the reference case of current harvested forest (A), and four scenarios of forest management; scenario (1) maximum forest harvest production (B), scenario (2a) conservation forest plus non-wood substitution (C), scenario (2b) conservation forest plus plantation substitution (D), and scenario (2c) conservation forest plus existing plantations (E). All biomass pools in the harvested forest system were included, both on- and off-site. Carbon stock in harvested forest included above-and below-ground living and dead biomass. Carbon stocks shown for pine and eucalypt plantations included forest biomass living and dead, wood and paper products and landfill.
Mentions: The simulation of changes in carbon stocks under current native forest management (reference scenario) was calculated at the local scale for the logged area on a rotation of 70 years (Fig A (A) in S3 Appendix), for the net harvested area on a return time of 20 years (a new selection of trees is harvested from the coupe after 20 years) (Fig A (B) in S3 Appendix), and at the regional scale as an average across the landscape (Fig 2). In the simulation of the average carbon stock across the region over a 100 year time period, the area under the curve represents the cumulative carbon stock in the forest system over time (Fig 2). Identifying the carbon stocks in each type of harvested area in this way provided an understanding of the dynamics over time and the mosaic of areas aggregated at the landscape scale. The simulated carbon stock change from our model was compared with modelled outputs from FCNSW [13] and productivity data reported for the species (Table A in S3 Appendix).

Bottom Line: Conservation of native forests results in an immediate and substantial reduction in net emissions relative to a reference case of commercial harvesting.International forest-related policies, including negotiations under the UNFCCC, have failed to recognize fully the mitigation value of native forest conservation.Our analyses provide evidence for decision-making about the circumstances under which forest management provides mitigation benefits.

View Article: PubMed Central - PubMed

Affiliation: Fenner School of Environment and Society, The Australian National University, Canberra, ACT, Australia.

ABSTRACT
Climate change mitigation benefits from the land sector are not being fully realised because of uncertainty and controversy about the role of native forest management. The dominant policy view, as stated in the IPCC's Fifth Assessment Report, is that sustainable forest harvesting yielding wood products, generates the largest mitigation benefit. We demonstrate that changing native forest management from commercial harvesting to conservation can make an important contribution to mitigation. Conservation of native forests results in an immediate and substantial reduction in net emissions relative to a reference case of commercial harvesting. We calibrated models to simulate scenarios of native forest management for two Australian case studies: mixed-eucalypt in New South Wales and Mountain Ash in Victoria. Carbon stocks in the harvested forest included forest biomass, wood and paper products, waste in landfill, and bioenergy that substituted for fossil fuel energy. The conservation forest included forest biomass, and subtracted stocks for the foregone products that were substituted by non-wood products or plantation products. Total carbon stocks were lower in harvested forest than in conservation forest in both case studies over the 100-year simulation period. We tested a range of potential parameter values reported in the literature: none could increase the combined carbon stock in products, slash, landfill and substitution sufficiently to exceed the increase in carbon stock due to changing management of native forest to conservation. The key parameters determining carbon stock change under different forest management scenarios are those affecting accumulation of carbon in forest biomass, rather than parameters affecting transfers among wood products. This analysis helps prioritise mitigation activities to focus on maximising forest biomass. International forest-related policies, including negotiations under the UNFCCC, have failed to recognize fully the mitigation value of native forest conservation. Our analyses provide evidence for decision-making about the circumstances under which forest management provides mitigation benefits.

No MeSH data available.