Limits...
Sexual Communication in the Drosophila Genus.

Bontonou G, Wicker-Thomas C - Insects (2014)

Bottom Line: We describe courtship and signals involved in sexual communication, with a special focus on sex pheromones.We examine the role of cuticular hydrocarbons as sex pheromones, their implication in sexual isolation, and their evolution.Finally, we discuss the roles of male cuticular non-hydrocarbon pheromones that act after mating: cis-vaccenyl acetate, developing on its controversial role in courtship behavior and long-chain acetyldienylacetates and triacylglycerides, which act as anti-aphrodisiacs in mated females.

View Article: PubMed Central - PubMed

Affiliation: CNRS UPR 9034 and Université de Paris Sud, 91198 Gif sur Yvette, France. Gwenaelle.Bontonou@legs.cnrs-gif.fr.

ABSTRACT
In insects, sexual behavior depends on chemical and non-chemical cues that might play an important role in sexual isolation. In this review, we present current knowledge about sexual behavior in the Drosophila genus. We describe courtship and signals involved in sexual communication, with a special focus on sex pheromones. We examine the role of cuticular hydrocarbons as sex pheromones, their implication in sexual isolation, and their evolution. Finally, we discuss the roles of male cuticular non-hydrocarbon pheromones that act after mating: cis-vaccenyl acetate, developing on its controversial role in courtship behavior and long-chain acetyldienylacetates and triacylglycerides, which act as anti-aphrodisiacs in mated females.

No MeSH data available.


Related in: MedlinePlus

Typical chromatograms of cuticular hydrocarbons from a male and female cosmopolitan D. melanogaster strain (Canton-S). The main pheromones are indicated on the chromatogram on the left and their chemical structures are shown on the right.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4592592&req=5

insects-05-00439-f004: Typical chromatograms of cuticular hydrocarbons from a male and female cosmopolitan D. melanogaster strain (Canton-S). The main pheromones are indicated on the chromatogram on the left and their chemical structures are shown on the right.

Mentions: In the Drosophila group, cuticular hydrocarbons (CHCs) act as recognition signals and sex pheromones. They are perceived at a short distance by olfactory organs on the head (antennae and maxillary palps) and/or by contact with the tarsi and proboscis gustative organs [54,55,56]. There are fewer CHCs compared to other insects [57], however, there is a high diversity concerning chain length, the number and position of unsaturations and the existence, in some species, of sex dimorphism and intra-specific variation. We will focus here on a limited number of species, the phylogenetics of which are represented in Figure 3. CHC length can vary from 20 to 40 carbons. Some species have a larger synthesis spectrum than others and therefore a wilder cuticular signature. Drosophila birchii, for example, synthesizes CHCs ranging from 20 to 33 carbons, whereas Drosophila peniculipedis (Hawaiian species) males have only 25 and 27 carbon CHCs [58]. Chain length is well conserved within groups: Hawaiian drosophilae and drosophilae from the Sophophora sub-group produce the shortest CHCs (between 23 and 29 carbons in most species, but up to 33 carbons in D. ananassae and Drosophila erecta); the virilis group species produce CHCs that are slightly longer (between 22 and 31 carbons); and the repleta group species synthesize the longest (between 28 and 40 carbons). The compounds that constitute Drosophila hydrocarbon profiles belong to a limited number of classes. They are generally n-alkanes, unsaturated compounds with one or several double bonds (monoenes, alkadienes, alkatrienes) and alkanes with a methyl group. Some species, such as D. melanogaster, synthesize all or most of these compounds whereas others such as Drosophila willistoni and Drosophila elegans synthesize a few of them. Interspecific differences can be qualitative and also quantitative. The highest variation, particularly in those involving CHC sex dimorphism, occurs in the melanogaster sub-group. Male hydrocarbon profiles are extremely similar: in all species, almost of the half of CHCs are 7-tricosene (C23:1; 7-T) and, with the exception of Drosophila erecta males, 7-pentacosene (C25:1; 7-P) (Figure 4) [59,60,61].


Sexual Communication in the Drosophila Genus.

Bontonou G, Wicker-Thomas C - Insects (2014)

Typical chromatograms of cuticular hydrocarbons from a male and female cosmopolitan D. melanogaster strain (Canton-S). The main pheromones are indicated on the chromatogram on the left and their chemical structures are shown on the right.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4592592&req=5

insects-05-00439-f004: Typical chromatograms of cuticular hydrocarbons from a male and female cosmopolitan D. melanogaster strain (Canton-S). The main pheromones are indicated on the chromatogram on the left and their chemical structures are shown on the right.
Mentions: In the Drosophila group, cuticular hydrocarbons (CHCs) act as recognition signals and sex pheromones. They are perceived at a short distance by olfactory organs on the head (antennae and maxillary palps) and/or by contact with the tarsi and proboscis gustative organs [54,55,56]. There are fewer CHCs compared to other insects [57], however, there is a high diversity concerning chain length, the number and position of unsaturations and the existence, in some species, of sex dimorphism and intra-specific variation. We will focus here on a limited number of species, the phylogenetics of which are represented in Figure 3. CHC length can vary from 20 to 40 carbons. Some species have a larger synthesis spectrum than others and therefore a wilder cuticular signature. Drosophila birchii, for example, synthesizes CHCs ranging from 20 to 33 carbons, whereas Drosophila peniculipedis (Hawaiian species) males have only 25 and 27 carbon CHCs [58]. Chain length is well conserved within groups: Hawaiian drosophilae and drosophilae from the Sophophora sub-group produce the shortest CHCs (between 23 and 29 carbons in most species, but up to 33 carbons in D. ananassae and Drosophila erecta); the virilis group species produce CHCs that are slightly longer (between 22 and 31 carbons); and the repleta group species synthesize the longest (between 28 and 40 carbons). The compounds that constitute Drosophila hydrocarbon profiles belong to a limited number of classes. They are generally n-alkanes, unsaturated compounds with one or several double bonds (monoenes, alkadienes, alkatrienes) and alkanes with a methyl group. Some species, such as D. melanogaster, synthesize all or most of these compounds whereas others such as Drosophila willistoni and Drosophila elegans synthesize a few of them. Interspecific differences can be qualitative and also quantitative. The highest variation, particularly in those involving CHC sex dimorphism, occurs in the melanogaster sub-group. Male hydrocarbon profiles are extremely similar: in all species, almost of the half of CHCs are 7-tricosene (C23:1; 7-T) and, with the exception of Drosophila erecta males, 7-pentacosene (C25:1; 7-P) (Figure 4) [59,60,61].

Bottom Line: We describe courtship and signals involved in sexual communication, with a special focus on sex pheromones.We examine the role of cuticular hydrocarbons as sex pheromones, their implication in sexual isolation, and their evolution.Finally, we discuss the roles of male cuticular non-hydrocarbon pheromones that act after mating: cis-vaccenyl acetate, developing on its controversial role in courtship behavior and long-chain acetyldienylacetates and triacylglycerides, which act as anti-aphrodisiacs in mated females.

View Article: PubMed Central - PubMed

Affiliation: CNRS UPR 9034 and Université de Paris Sud, 91198 Gif sur Yvette, France. Gwenaelle.Bontonou@legs.cnrs-gif.fr.

ABSTRACT
In insects, sexual behavior depends on chemical and non-chemical cues that might play an important role in sexual isolation. In this review, we present current knowledge about sexual behavior in the Drosophila genus. We describe courtship and signals involved in sexual communication, with a special focus on sex pheromones. We examine the role of cuticular hydrocarbons as sex pheromones, their implication in sexual isolation, and their evolution. Finally, we discuss the roles of male cuticular non-hydrocarbon pheromones that act after mating: cis-vaccenyl acetate, developing on its controversial role in courtship behavior and long-chain acetyldienylacetates and triacylglycerides, which act as anti-aphrodisiacs in mated females.

No MeSH data available.


Related in: MedlinePlus