Limits...
How effective are common medications: a perspective based on meta-analyses of major drugs.

Leucht S, Helfer B, Gartlehner G, Davis JM - BMC Med (2015)

Bottom Line: We found that some of the medications have relatively low effect sizes with only 11 out of 17 of them showing a minimal clinically important difference.Efficacy was often established based on surrogate outcomes and not the more relevant patient-oriented outcomes.That could help prevent harmful overtreatment and reinforce an evidence-based, but personalized medicine.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychiatry and Psychotherapy, Technische Universität München, Klinikum rechts der Isar, Ismaninger Straße 22, 81675, Munich, Germany. Stefan.Leucht@lrz.tu-muenchen.de.

ABSTRACT
The vastness of clinical data and the progressing specialization of medical knowledge may lead to misinterpretation of medication efficacy. To show a realistic perspective on drug efficacy we present meta-analyses on some of the most commonly used pharmacological interventions. For each pharmacological intervention we present statistical indexes (absolute risk or response difference, percentage response ratio, mean difference, standardized mean difference) that are often used to represent efficacy. We found that some of the medications have relatively low effect sizes with only 11 out of 17 of them showing a minimal clinically important difference. Efficacy was often established based on surrogate outcomes and not the more relevant patient-oriented outcomes. As the interpretation of the efficacy of medication is complex, more training for physicians might be needed to get a more realistic view of drug efficacy. That could help prevent harmful overtreatment and reinforce an evidence-based, but personalized medicine.

No MeSH data available.


Related in: MedlinePlus

Summary of effect sizes for common pharmacological treatments. The figure presents primary pharmacological intervention for a given therapy type, the primary outcome, descriptive statistics and efficacy measures. Effect sizes are expressed as standardized mean difference with corresponding confidence intervals on the right side and the AMSTAR score below. The graph in the middle shows a ranking of effect sizes according to Cohen: small effect size is no bigger than 0.2; medium effect size is around 0.5; and large effect sizes are bigger than 0.8. Marked with red color are outcomes that can be objectively measured and are patient-oriented [8–12, 15–18, 23–32]. The following drugs listed by the IMS Institute report were not included in the figure: thyroid preparations (no meta-analysis was found); anti-epileptics (no meta-analysis on monotherapy was found because current antiepileptic trials are add-on); hormonal contraceptives for birth control (no “disease” as an indication); and alpha-adrenergic antagonists for benign prostate hyperplasia (no SMD was provided or calculable). All values are statistically significant (except mortality for metformin). All additional confidence intervals can be obtained from the authors upon request. AMSTAR, a measurement scale for the assessment of the methodological quality of systematic reviews; ARD, absolute risk or response difference; CI, confidence interval; D, percentage of patients with the outcome in the drug group; MD, mean difference in original units; n, number of participants; N, number of trials; PL, percentage of patients with the outcome in the placebo group; PRR, percentage response ratio; SMD, standardized mean difference
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4592565&req=5

Fig1: Summary of effect sizes for common pharmacological treatments. The figure presents primary pharmacological intervention for a given therapy type, the primary outcome, descriptive statistics and efficacy measures. Effect sizes are expressed as standardized mean difference with corresponding confidence intervals on the right side and the AMSTAR score below. The graph in the middle shows a ranking of effect sizes according to Cohen: small effect size is no bigger than 0.2; medium effect size is around 0.5; and large effect sizes are bigger than 0.8. Marked with red color are outcomes that can be objectively measured and are patient-oriented [8–12, 15–18, 23–32]. The following drugs listed by the IMS Institute report were not included in the figure: thyroid preparations (no meta-analysis was found); anti-epileptics (no meta-analysis on monotherapy was found because current antiepileptic trials are add-on); hormonal contraceptives for birth control (no “disease” as an indication); and alpha-adrenergic antagonists for benign prostate hyperplasia (no SMD was provided or calculable). All values are statistically significant (except mortality for metformin). All additional confidence intervals can be obtained from the authors upon request. AMSTAR, a measurement scale for the assessment of the methodological quality of systematic reviews; ARD, absolute risk or response difference; CI, confidence interval; D, percentage of patients with the outcome in the drug group; MD, mean difference in original units; n, number of participants; N, number of trials; PL, percentage of patients with the outcome in the placebo group; PRR, percentage response ratio; SMD, standardized mean difference

Mentions: Figure 1 lists examples of medications used primarily in the 20 most common therapy types together with a number of statistical indices. Here we explain how these measures are calculated and give some examples:


How effective are common medications: a perspective based on meta-analyses of major drugs.

Leucht S, Helfer B, Gartlehner G, Davis JM - BMC Med (2015)

Summary of effect sizes for common pharmacological treatments. The figure presents primary pharmacological intervention for a given therapy type, the primary outcome, descriptive statistics and efficacy measures. Effect sizes are expressed as standardized mean difference with corresponding confidence intervals on the right side and the AMSTAR score below. The graph in the middle shows a ranking of effect sizes according to Cohen: small effect size is no bigger than 0.2; medium effect size is around 0.5; and large effect sizes are bigger than 0.8. Marked with red color are outcomes that can be objectively measured and are patient-oriented [8–12, 15–18, 23–32]. The following drugs listed by the IMS Institute report were not included in the figure: thyroid preparations (no meta-analysis was found); anti-epileptics (no meta-analysis on monotherapy was found because current antiepileptic trials are add-on); hormonal contraceptives for birth control (no “disease” as an indication); and alpha-adrenergic antagonists for benign prostate hyperplasia (no SMD was provided or calculable). All values are statistically significant (except mortality for metformin). All additional confidence intervals can be obtained from the authors upon request. AMSTAR, a measurement scale for the assessment of the methodological quality of systematic reviews; ARD, absolute risk or response difference; CI, confidence interval; D, percentage of patients with the outcome in the drug group; MD, mean difference in original units; n, number of participants; N, number of trials; PL, percentage of patients with the outcome in the placebo group; PRR, percentage response ratio; SMD, standardized mean difference
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4592565&req=5

Fig1: Summary of effect sizes for common pharmacological treatments. The figure presents primary pharmacological intervention for a given therapy type, the primary outcome, descriptive statistics and efficacy measures. Effect sizes are expressed as standardized mean difference with corresponding confidence intervals on the right side and the AMSTAR score below. The graph in the middle shows a ranking of effect sizes according to Cohen: small effect size is no bigger than 0.2; medium effect size is around 0.5; and large effect sizes are bigger than 0.8. Marked with red color are outcomes that can be objectively measured and are patient-oriented [8–12, 15–18, 23–32]. The following drugs listed by the IMS Institute report were not included in the figure: thyroid preparations (no meta-analysis was found); anti-epileptics (no meta-analysis on monotherapy was found because current antiepileptic trials are add-on); hormonal contraceptives for birth control (no “disease” as an indication); and alpha-adrenergic antagonists for benign prostate hyperplasia (no SMD was provided or calculable). All values are statistically significant (except mortality for metformin). All additional confidence intervals can be obtained from the authors upon request. AMSTAR, a measurement scale for the assessment of the methodological quality of systematic reviews; ARD, absolute risk or response difference; CI, confidence interval; D, percentage of patients with the outcome in the drug group; MD, mean difference in original units; n, number of participants; N, number of trials; PL, percentage of patients with the outcome in the placebo group; PRR, percentage response ratio; SMD, standardized mean difference
Mentions: Figure 1 lists examples of medications used primarily in the 20 most common therapy types together with a number of statistical indices. Here we explain how these measures are calculated and give some examples:

Bottom Line: We found that some of the medications have relatively low effect sizes with only 11 out of 17 of them showing a minimal clinically important difference.Efficacy was often established based on surrogate outcomes and not the more relevant patient-oriented outcomes.That could help prevent harmful overtreatment and reinforce an evidence-based, but personalized medicine.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychiatry and Psychotherapy, Technische Universität München, Klinikum rechts der Isar, Ismaninger Straße 22, 81675, Munich, Germany. Stefan.Leucht@lrz.tu-muenchen.de.

ABSTRACT
The vastness of clinical data and the progressing specialization of medical knowledge may lead to misinterpretation of medication efficacy. To show a realistic perspective on drug efficacy we present meta-analyses on some of the most commonly used pharmacological interventions. For each pharmacological intervention we present statistical indexes (absolute risk or response difference, percentage response ratio, mean difference, standardized mean difference) that are often used to represent efficacy. We found that some of the medications have relatively low effect sizes with only 11 out of 17 of them showing a minimal clinically important difference. Efficacy was often established based on surrogate outcomes and not the more relevant patient-oriented outcomes. As the interpretation of the efficacy of medication is complex, more training for physicians might be needed to get a more realistic view of drug efficacy. That could help prevent harmful overtreatment and reinforce an evidence-based, but personalized medicine.

No MeSH data available.


Related in: MedlinePlus